Math, asked by gunishkakaur, 1 year ago

these 4 sums pleaseusing identity..

Attachments:

Answers

Answered by raftaar22
1
the question is solved...
see the attachments
Attachments:

gunishkakaur: but which identity
gunishkakaur: ya ya..got it
gunishkakaur: thanks
Answered by RoyalLady
1
\huge\underline\mathfrak{Solution}



\textbf{Step-by-step Solution}


\textbf{Answer.1}

 { \: (2x + 7y)}^{2}




\textbf{Identity used}

 { \: (x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy


4 {x}^{2} + 49 {y}^{2} + 28xy




\textbf{Answer.2}

 { (\frac{1}{2}x + \frac{2}{3} y )}^{2}


\textbf{Using,same Identity}

 { \: ( \frac{1}{2} )}^{2} + { \: (\frac{2}{3}) }^{2} + 2 \times \frac{1}{2} \times \frac{2}{3}

 \frac{1}{4} {x}^{2} + \frac{4}{9} {y}^{2} + 2 \times \frac{1}{2} \times \frac{2}{3}

 \frac{1}{4} {x}^{2} + \frac{4}{9} {y}^{2} + \frac{2}{3}




\textbf{Answer.3}

 {(3x + \frac{1}{2x} )}^{2}

\textbf{Using,same Identity}

9 {x}^{2} + \frac{1}{16} {x}^{2} + 2 \times 3x \times \frac{1}{2x}

9 {x }^{2} + \frac{1}{16} {y}^{2} + 3

144 {x}^{2} + {y}^{2} + 48 = 0
Similar questions