Math, asked by Deepikagill, 1 month ago

These are two simultaneous equations.
Solve using cross multiplication. ​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\: - x + 2y = 1

and

\rm :\longmapsto\:5x - 9y =  - 3

So, using Cross multiplication method, we have

 \red{\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf   2 & \sf  1 & \sf  - 1 & \sf  2\\ \\ \sf  - 9 & \sf  - 3 & \sf 5 & \sf  - 9\\ \end{array}} \\ \end{gathered}}

So, we get

\rm :\longmapsto\:\dfrac{x}{ - 6 - ( - 9)}  = \dfrac{y}{5 - 3}  = \dfrac{ - 1}{9 - 10}

\rm :\longmapsto\:\dfrac{x}{ - 6 + 9}  = \dfrac{y}{2}  = \dfrac{ - 1}{ - 1}

\rm :\longmapsto\:\dfrac{x}{3}  = \dfrac{y}{2}  = \dfrac{1}{ 1}

\rm \implies\:\boxed{ \tt{ \: x = 3 \:  \: and \:  \: y = 2 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Verification :-

Consider Equation (1)

\rm :\longmapsto\: - x + 2y = 1

On substituting the values of x and y, we get

\rm :\longmapsto\: - 3 + 2 \times 2 = 1

\rm :\longmapsto\: - 3 + 4 = 1

\bf\implies \:1 = 1

Hence, Verified

Consider Equation (2)

\rm :\longmapsto\:5x - 9y =  - 3

On substituting the values of x and y, we get

\rm :\longmapsto\:5 \times 3 - 9 \times 2=  - 3

\rm :\longmapsto\:15 - 18=  - 3

\bf\implies \: - 3 =  - 3

Hence, Verified

Similar questions