Math, asked by Nikita2481, 5 months ago

These is the question of class 12 maths​

Attachments:

Answers

Answered by Tomboyish44
22

Question: To prove that, |1 a² a³, 1 b² b³, 1 c² c³| = (a - b)(b - c)(c - a)(ab + bc + ca)

\Longrightarrow \left|\begin{array}{ccc}\sf 1 & \sf a^2 & \sf a^3 \\ \sf 1 & \sf b^2 & \sf b^3 \\\sf 1 & \sf c^2 & \sf c^3\end{array}\right| = \sf (a - b)(b - c)(c - a)(ab + bc + ca)

Taking the LHS we get;

\Longrightarrow \left|\begin{array}{ccc}\sf 1 & \sf a^2 & \sf a^3 \\ \sf 1 & \sf b^2 & \sf b^3 \\\sf 1 & \sf c^2 & \sf c^3\end{array}\right|  

 

Let R1 ➝ R1 - R2

\Longrightarrow \left|\begin{array}{ccc}\sf 1 - 1 & \sf a^2 - b^2 & \sf a^3 - b^3\\ \sf 1 & \sf b^2 & \sf b^3 \\\sf 1 & \sf c^2 & \sf c^3\end{array}\right|

Let R2 ➝ R2 - R3

\Longrightarrow \left|\begin{array}{ccc}\sf 0 & \sf a^2 - b^2 & \sf a^3 - b^3\\ \sf 1 - 1 & \sf b^2 - c^2 & \sf b^3 - c^3 \\\sf 1 & \sf c^2 & \sf c^3\end{array}\right|

\Longrightarrow \left|\begin{array}{ccc}\sf 0 & \sf a^2 - b^2 & \sf a^3 - b^3\\ \sf 0 & \sf b^2 - c^2 & \sf b^3 - c^3 \\\sf 1 & \sf c^2 & \sf c^3\end{array}\right|

On expanding the determinant along C1 (first column) we get:

\Delta = \sf 0\left|\begin{array}{ccc} \sf b^2 - c^2 & \sf b^3 - c^3 \\ \sf c^2 & \sf c^3\end{array}\right| - 0\left|\begin{array}{ccc} \sf a^2 - b^2 & \sf a^3 - b^3 \\ \sf c^2 & \sf c^3 \end{array}\right| + 1\left|\begin{array}{ccc} \sf a^2 - b^2 & \sf a^3 - b^3\\ \sf b^2 - c^2 & \sf b^3 - c^3\end{array}\right|

\Delta = \sf 0 - 0 + 1\left|\begin{array}{ccc} \sf a^2 - b^2 & \\ \sf b^2 - c^2 \end{array} \! \! \! \! \! \! \nearrow \! \! \! \! \! \! \searrow \begin{array}{ccc} \sf a^3 - b^3\\ \sf b^3 - c^3\end{array}\right|

\sf \Delta = 1 \Big[(a^2 - b^2)(b^3 - c^3) - \big[(a^3 - b^3)(b^2 - c^2)\big]\Big]

Using the following identities we get:

  • a² - b² = (a + b)(a - b)
  • a³ - b³ = (a - b)(a² + ab + b²)

\sf \Delta = (a + b)(a - b)(b - c) (b^2 + bc + c^2) - (a - b) (a^2 + ab + b^2)(b^2 - c^2)

(a - b) is a common factor in both the subtrahend, so let's take it out as a common factor & expand (b² - c²).

\sf \Delta = (a - b)\Big[(a + b)(b - c) (b^2 + bc + c^2) - (a^2 + ab + b^2)(b + c)(b - c)\Big]

(b - c) is a common factor in both the subtrahend, so let's take it out as a common factor

\sf \Delta = (a - b)(b - c)\Big[(a + b)(b^2 + bc + c^2) - (a^2 + ab + b^2)(b + c)\Big]

On opening the brackets in [] we get,

\Delta = \sf (a - b)(b - c)\Big[ab^2 + abc + ac^2 + b^3 + b^2c + bc^2 \\{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sf - (ba^2 + ab^2 + b^3 + ca^2 + abc + cb^2)\Big]}

\Delta = \sf (a - b)(b - c)\Big[\textsf{\textbf{ab}}^2 + \textsf{\textbf{abc}} + ac^2 + \textsf{\textbf{b}}^3 + \textsf{\textbf{b}}^2\textsf{\textbf{c}} + bc^2 \\{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - ba^2 \textsf{\textbf{\ -\ ab}}^2 \textsf{\textbf{\ - b}}^3 - ca^2 \textsf{\textbf{\ - abc - cb}}^2 \Big]}

[The terms in bold have been cancelled]

\Delta = \sf (a - b)(b - c)\Big[ac^2 + bc^2 - ba^2 - ca^2 \Big]

On re-arranging the terms we get,

\Delta = \sf (a - b)(b - c)\Big[ac^2 - ca^2 + bc^2 - ba^2 \Big]

On taking out common factors we get,

\Delta = \sf (a - b)(b - c)\Big[ac(c - a) + b(c^2 - a^2) \Big]

On applying the identity a² - b² = (a + b)(a - b) we get,

[Where 'a' = c and 'b' = a]

\sf \Delta = (a - b)(b - c)\Big[ac(c - a) + b(c - a)(c + a) \Big]

(c - a) is common in both the subtrahend, on taking it out as a common factor we get,

\Delta = \sf (a - b)(b - c)(c - a)\Big[ac + b(c + a) \Big]

\Delta = \sf (a - b)(b - c)(c - a)\Big[ac + bc + ba \Big]

On re-arranging the terms we get,

\underline{\underline{\bold\Delta = \sf \textsf{\textbf{(a - b)(b - c)(c - a)}}\big(\textsf{\textbf{ab + bc + ca}}\big)}}

LHS = RHS

Hence proved.

Similar questions