theta +phy=60degree.show that sin(120-theta)=cos(30-phy)
Answers
Answered by
0
Answer:
Hope it helps you
Step-by-step explanation:
We can write ,
cos (30° - θ) = cos { 90° -(60° + θ)}= sin(60°+ θ)
Now, Sin(60° + θ) - cos(30° - θ)
= Sin(60° + θ) - sin(60°+ θ)
= 0
Answered by
0
Step-by-step explanation:
Given:
Ф + θ = 60°
To prove that: \sin (120-\theta)sin(120−θ) = \cos(30-\phi)cos(30−ϕ) .
L.H.S. = \sin (120-\theta)sin(120−θ)
∵ Ф + θ = 60°
⇒ θ = 60° - Ф
= \sin (120-(60-\phi))sin(120−(60−ϕ))
= \sin (120-60+\phi)sin(120−60+ϕ)
= \sin (60+\phi)sin(60+ϕ)
Using the trigonometric identity:
\cos AcosA = \sin (90-A)sin(90−A)
= \cos (90-60-\phi)cos(90−60−ϕ)
= \cos(30-\phi)cos(30−ϕ)
= R.H.S., proved.
Thus, \sin (120-\theta)sin(120−θ) = \cos(30-\phi)cos(30−ϕ) , proved.
Similar questions