English, asked by upharshitnj28, 2 months ago

they read a book change into passive voice​

Answers

Answered by Anonymous
0

Answer:

Priceofcomputerafter6year=£1977.1

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

Step−by−stepexplanation:

\begin{gathered} \green{\underline \bold{Given :}} \\ \tt: \implies Price \: of \: computer = \pounds 2100 \\ \\ \tt: \implies Depreciate \: rate\% = 1\% \\ \\ \red{\underline \bold{To \: Find :}} \\ \tt: \implies Price \: of \: computer \: after \: 6 \: year =? \end{gathered}

Given:

:⟹Priceofcomputer=£2100

:⟹Depreciaterate%=1%

ToFind:

:⟹Priceofcomputerafter6year=?

• According to given question :

\begin{gathered} \bold{As \: we \: know \: that : } \\ \tt: \implies 1st \: year \: depreciate \: price = 2100 - 2100 \: of \: 1\% \\ \\ \tt: \implies 1st \: year \: depreciate \: price =2100 - 2100 \times \frac{1}{100} \\ \\ \tt: \implies 1st \: year \: depreciate \: price =2100 - 21 \\ \\ \tt: \implies 1st \: year \: depreciate \: price = \pounds 2079 \\ \\ \bold{For \: 2nd \: year : } \\ \tt: \implies 2nd \: year \: depreciate \: price =2079 - 1\% \: of \: 2079 \\ \\ \tt: \implies 2nd \: year \: depreciate \: price = 2079 - \frac{1}{100} \times 2079 \\ \\ \tt: \implies 2nd\: year \: depreciate \: price =2079 - 20.79 \\ \\ \tt: \implies 2nd\: year \: depreciate \: price = \pounds 2058.21 \\ \\ \bold{Similarly : } \\ \tt: \implies 3rd\: year \: depreciate \: price =2058.21 - 1\% \: of \: 2058.21\end{gathered}

Asweknowthat:

:⟹1styeardepreciateprice=2100−2100of1%

:⟹1styeardepreciateprice=2100−2100×

100

1

:⟹1styeardepreciateprice=2100−21

:⟹1styeardepreciateprice=£2079

For2ndyear:

:⟹2ndyeardepreciateprice=2079−1%of2079

:⟹2ndyeardepreciateprice=2079−

100

1

×2079

:⟹2ndyeardepreciateprice=2079−20.79

:⟹2ndyeardepreciateprice=£2058.21

Similarly:

:⟹3rdyeardepreciateprice=2058.21−1%of2058.21

\begin{gathered} \\ \tt: \implies3rd \: year \: depreciate \: price =2058.21 - 20.5821 \\ \\ \tt: \implies 3rd \: year \: depreciate \: price =\pounds 2037.6279 \\ \\ \bold{For \: 4th \: year : } \\ \tt: \implies 4th \: year \: depreciate \: price = 2037.6279 - 20.376279 \\ \\ \tt: \implies 4th \: year \: depreciate \: price =\pounds 2017.251621 \\ \\ \bold{For \: 5th \: year : } \\ \tt: \implies5th \: year \: depreciate \: price =2017.251621 - 20.17251621 \\ \\ \tt: \implies 5th \: year \: depreciate \: price =\pounds 1997.07910479 \\ \\ \bold{For \: 6th \: year : }\\ \tt: \implies 6th \: year \: depreciate \: price = 1997.07910479 - 19.9707910479 \\ \\ \tt: \implies 6th\: year \: depreciate \: price =1977.1083077421 \\ \\ \green{\tt: \implies 6th\: year \: depreciate \: price = \pounds 1977.1}\end{gathered}

:⟹3rdyeardepreciateprice=2058.21−20.5821

:⟹3rdyeardepreciateprice=£2037.6279

For4thyear:

:⟹4thyeardepreciateprice=2037.6279−20.376279

:⟹4thyeardepreciateprice=£2017.251621

For5thyear:

:⟹5thyeardepreciateprice=2017.251621−20.17251621

:⟹5thyeardepreciateprice=£1997.07910479

For6thyear:

:⟹6thyeardepreciateprice=1997.07910479−19.9707910479

:⟹6thyeardepreciateprice=1977.1083077421

:⟹6thyeardepreciateprice=£1977.1

Answered by priyanshipanchal2007
2

Answer:

A book was read by them.

Please mark me the Brainliest !

Similar questions