Math, asked by arihantjain1230, 7 months ago

Thhe diagonals of a rhombus are in ratio 3:4 if the longer diagonal is 12cm then find the are of rhombus

Answers

Answered by ShírIey
120

S O L U T I O N

Diagonals of a rhombus are in the ratio of 3:4. And, the longer diagonal is 12 cm.

We've to find out the area of the rhombus.

let's consider that smaller & longer diagonal of the rhombus be 3x & 4x.

⠀⠀⠀⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 4x = 12 \\\\\\:\implies\sf x = \cancel\dfrac{12}{4}  \\\\\\:\implies\sf\pink{ x = 3}\\\\\\:\implies\sf 3x \qquad\qquad \bigg\lgroup\bf Smaller \  Diagonal \bigg\rgroup \\\\\\:\implies\sf 3 \times 3\\\\\\:\implies\boxed{\bf{\blue{Diagonal_{(smaller)} = 9  \: cm}}}\\\\\\:\implies\sf 4x \qquad\qquad \bigg\lgroup\bf Longer \ Diagonal \bigg\rgroup\\\\\\:\implies\sf 4 \times 3\\\\\\:\implies\boxed{\bf{\blue{Diagonal_{(longer)} = 12 \:  cm}}}

\\

⠀By using the formula,

⠀⠀⠀⠀⠀⠀ ⠀⠀⠀

\star\ \boxed{\purple{\sf{Area_{(rhombus)} = \frac{1}{2} \times (d_1) \times (d_2)}}}

\bf{Diagonals}\begin{cases}\sf{d_{1} = 9 \ cm}\\\sf{d_2 = 12 \ cm}\end{cases}

Substituting values in the formula,

⠀⠀⠀⠀⠀ ⠀⠀⠀

\\

:\implies\sf Area_{(rhombus)} =  \dfrac{1}{\cancel{ \: 2}} \times 9 \times \cancel{12} \\\\\\:\implies\sf Area_{(rhombus)} = 9 \times 6 \\\\\\:\implies\boxed{\frak {Area_{(rhombus)} = 54 \ cm^2}}

⠀⠀⠀⠀⠀⠀

\therefore\:\underline{\sf{Area \:  of  \: the  \: rhombus \:  is  \: \bf{54  \: cm^2.}}}

Answered by rocky200216
79

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • The diagonals of a rhombus are in ratio 3:4 .

  • If the longer diagonal is 12cm .

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  • The area of the rhombus .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

Let,

  • The smaller diagonal of the rhombus be '3a' .

  • And the longer diagonal of the rhombus be '4a' .

☯︎ According to the question,

⇒ 4a = 12

⇒ a = \rm{\dfrac{12}{4}}

a = 3 cm

✞︎ Hence the smaller diagonal of the rhombus is

 \implies 3a

 \implies 3 × 3

 \implies 9 cm

☞︎︎︎ We know that,

\purple\bigstar\:\bf{\red{\overbrace{\underbrace{\blue{Area\:of\:rhombus\:=\:\dfrac{1}{2}\times{d_1}\times{d_2}\:}}}}} \\

Where,

  • \bf\red{d_1} = 9 cm

  • \bf\red{d_2} = 12 cm

Area of the rhombus = \rm{\dfrac{1}{2}} × 9 × 12

Area of the rhombus = 9 × 6

Area of the rhombus = 54 cm²

\huge\red\therefore The area of the rhombus is '54 cm²' .

Similar questions