think that you are a part of the Monaco administration as a minister.Explain the different way in which the criminal would have been dealt with and offer your suggestion to the kingdom. Write your suggestion in the form of an article.
Answers
Answer:
ep-by-step explanation:
Given
\begin{gathered} \sin( \frac{y}{2} ) = \tan( \frac{y}{2} ) \\ \\ \implies \: \sin( \frac{y}{2} ) = \frac{ \sin( \frac{y}{2} ) }{ \cos( \frac{y}{2} ) } \: \: \\ \\ asumming \: \: \cos( \frac{y}{2} ) \neq0 \: \: else \: \tan( \frac{y}{2} ) = \infty \\ \\ \implies \sin( \frac{y}{2} ) - \frac{ \sin( \frac{y}{2} ) }{ \cos( \frac{y}{2} ) } = 0 \\ \\ \implies \sin( \frac{y}{2} ) \ \ \bigg \{1 - \frac{ 1 }{ \cos( \frac{y}{2} ) } \bigg \} = 0 \\ \\ \red{case \: 1} \\ \\ \sin( \frac{y}{2} ) = 0 \\ \\ \implies \: \cos(y) =1 - 2 \sin {}^{2} ( \frac{y}{2} ) = 1 - 0 = 1 \\ \\ \red{case \:2 } \\ \\ 1 - \frac{1}{ \cos( \frac{y}{2} ) } = 0 \\ \\ \implies \: \cos( \frac{y}{2} ) = 1 \\ \\ \implies \: \cos(y) = 2 \cos {}^{2} ( \frac{y}{2} ) - 1 = 2. {1}^{2} - 1 = 1\end{gathered}
sin(
2
y
)=tan(
2
y
)
⟹sin(
2
y
)=
cos(
2
y
)
sin(
2
y
)
asummingcos(
2
y
)
=0elsetan(
2
y
)=∞
⟹sin(
2
y
)−
cos(
2
y
)
sin(
2
y
)
=0
⟹sin(
2
y
) {1−
cos(
2
y
)
1
}=0
case1
sin(
2
y
)=0
⟹cos(y)=1−2sin
2
(
2
y
)=1−0=1
case2
1−
cos(
2
y
)
1
=0
⟹cos(
2
y
)=1
⟹cos(y)=2cos
2
(
2
y
)−1=2.1
2
−1=1