Math, asked by rkgarg1111, 11 months ago

Third term of an A.P. is 21 and the eighth term is 56.Find A.P. and also find its eleventh term.​

Answers

Answered by shijithpala
3

Answer:

49

Step-by-step explanation:

t3=a+2d=21

t8=a+7d=56

t8-t3=5d=56-21=35

d=7

t7=t8-d=56-7=49

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{A.P=7,14,21,28,......}}}

\green{\tt{\therefore{11th\:term=77}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:  \implies Third \: term( a_{3})= 21 \\  \\ \tt:  \implies Eight \: term( a_{8})= 56 \\  \\ \red{\underline \bold{To \: Find : }} \\  \tt:  \implies A.P = ? \\  \\  \tt:  \implies 11th \: term ( a_{11}) = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{3} = a + 2d \\  \\ \tt:  \implies 21 = a + 2d -  -  -  -  - (1) \\  \\  \bold{for \: 8th \: term : } \\   \tt:  \implies  a_{8} = a + 7d \\  \\ \tt:  \implies 56 = a + 7d -  -  -  -  - (2) \\  \\  \text{On \: comparing \: (1) \: and \: (2)} \\  \green{\tt:  \implies d =  7} \\  \\  \green{\tt:  \implies a = 7} \\  \\  \tt \therefore A.P =7,14,21,28,..... \\  \\   \bold{For \: 11 \: th \: term : } \\ \tt:  \implies  a_{11} = a + 10d \\  \\ \tt:  \implies a_{11} =7 + 10 \times 7 \\  \\ \tt:  \implies a_{11} = 7 + 70 \\  \\  \green{\tt:  \implies a_{11} =77}

Similar questions