Math, asked by jaswalsharmila58, 18 days ago

this 34 no sum say me how to do it plsssssss cbse maths​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cosec\theta  - sin\theta  = l

\rm :\longmapsto\:\dfrac{1}{sin\theta }  - sin\theta  = l

\rm :\longmapsto\:\dfrac{1 -  {sin}^{2}\theta }{sin\theta }    = l

\rm :\longmapsto\:\dfrac{{cos}^{2}\theta }{sin\theta }    = l -  -  - (1)

Also, Given that

\rm :\longmapsto\:sec\theta  - cos\theta

\rm :\longmapsto\:\dfrac{1}{cos\theta }  - cos\theta  = m

\rm :\longmapsto\:\dfrac{1 -  {cos}^{2}\theta  }{cos\theta } = m

\rm :\longmapsto\:\dfrac{{sin}^{2}\theta  }{cos\theta } = m -  -  -  - (2)

Now, we have to prove that

\boxed{ \bf{ \:  {l}^{2}{m}^{2}( {l}^{2} +  {m}^{2} + 3)}}

Let we first solve

\rm :\longmapsto\: {l}^{2} +  {m}^{2}  + 3

\rm \:  =  \:  \: \dfrac{ {cos}^{4}\theta  }{ {sin}^{2} \theta }  + \dfrac{ {sin}^{4} \theta }{ {cos}^{2} \theta }  + 3

\rm \:  =  \:  \: \dfrac{ {sin}^{6} \theta  +  {cos}^{6} \theta  + 3 {sin}^{2}\theta  {cos}^{2}  \theta }{ {sin}^{2}\theta  {cos}^{2} \theta}

can be rewritten as

\rm \:  =  \:  \: \dfrac{ {sin}^{6} \theta  +  {cos}^{6} \theta  + 3 {sin}^{2}\theta  {cos}^{2}  \theta \times 1 }{ {sin}^{2}\theta  {cos}^{2} \theta}

\rm \:  =  \:  \: \dfrac{ {sin}^{6} \theta  +  {cos}^{6} \theta  + 3 {sin}^{2}\theta  {cos}^{2}  \theta \times ( {sin}^{2}\theta  +  {cos}^{2}\theta}{ {sin}^{2}\theta  {cos}^{2} \theta}

\rm \:  =  \:  \: \dfrac{ {sin}^{6} \theta  +  {cos}^{6} \theta  + 3 {sin}^{2}\theta  {cos}^{2}  \theta ( {sin}^{2}\theta  +  {cos}^{2}\theta}{ {sin}^{2}\theta  {cos}^{2} \theta}

\rm \:  =  \:  \: \dfrac{{( {sin}^{2}\theta  +  {cos}^{2} \theta ) }^{3}}{ {sin}^{2}\theta  {cos}^{2}\theta }

\rm \:  =  \:  \: \dfrac{ {(1)}^{3} }{ {sin}^{2}\theta  {cos}^{2}\theta }

\rm \:  =  \:  \: \dfrac{ 1 }{ {sin}^{2}\theta  {cos}^{2}\theta }

Hence,

\bf :\longmapsto\: {l}^{2} +  {m}^{2}  + 3 = \dfrac{1}{ {sin}^{2}\theta  {cos}^{2} \theta }

Now, Consider

\rm :\longmapsto\: {l}^{2} {m}^{2}( {l}^{2} +  {m}^{2} + 3)

\rm \:  =  \:  \: \dfrac{ {cos}^{4} \theta }{ {sin}^{2} \theta }  \times \dfrac{ {sin}^{4} \theta }{ {cos}^{2} \theta }  \times \dfrac{1}{ {sin}^{2}\theta  \:  {cos}^{2}\theta }

\rm \:  =  \:  \: 1

Hence,

\bf :\longmapsto\: {l}^{2} {m}^{2}( {l}^{2} +  {m}^{2} + 3) = 1

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions