Math, asked by kavyabirla200921, 3 months ago

this also please
with explaination. ​

Attachments:

Answers

Answered by Anonymous
13

Question :-

\sf \Big(\dfrac{5^{-1} \times 7^2}{5^{-2} \times 7^{-4}}\Big)^\frac{7}{2} \times \Big(\dfrac{5^{-2} \times 7^3}{5^{3} \times 7^{-5}}\Big)^\frac{-5}{2}

Answer :-

\implies\sf \Big(\dfrac{5^{-1} \times 7^2}{5^{-2} \times 7^{-4}}\Big)^\frac{7}{2} \times \Big(\dfrac{5^{-2} \times 7^3}{5^{3} \times 7^{-5}}\Big)^\frac{-5}{2}

\implies\sf \Big(\dfrac{5^{-1}}{5^{-2}} \times \dfrac{7^2}{7^{-4}}\Big)^\frac{7}{2} \times \Big(\dfrac{5^{-2}}{5^{3}} \times \dfrac{7^3}{7^{-5}}\Big)^\frac{-5}{2}

\implies\sf [5^{-1-2} \times 7^{2-(-4)}]^\frac{7}{2} \times [5^{-2-3} \times 7^{3-(-5)}]^\frac{-5}{2}

\implies\sf (5^{-3} \times 7^{2 + 4})^\frac{7}{2} \times (5^{-5} \times 7^{3+5})^\frac{-5}{2}

\implies\sf (5^{-3} \times 7^{6})^\frac{7}{2} \times (5^{-5} \times 7^{8})^\frac{-5}{2}

\implies\sf (5^{-3})^\frac{7}{2} \times (7^{\cancel6})^\frac{7}{\cancel2} \times (5^{-5})^\frac{-5}{2}\times (7^{\cancel8})^\frac{-5}{\cancel2}

\implies\sf 5^\frac{-21}{2} \times 7^{3\times 7} \times 5^\frac{25}{2} \times 7^{-5 \times 4}

\implies\sf 5^{\frac{-21}{2} + \frac{25}{2}} \times 7^{21} \times 7^{-20}

\implies\sf 5^\frac{\cancel4}{\cancel2} \times 7^{21-20}

\implies\sf 5^2 \times 7^1

\implies\sf 25 \times 7

\implies\boxed{\sf 175}


amansharma264: Great answer
Answered by rkcomp31
3

Given:

The following expression:

(\frac{5^{-1} \times 7^{2}}{5^2\times7^{2}} )^{\frac72}\times( \frac{5^-2 \times 7^3}{5^3\times7^-5})^{\frac{-5}{2}\\\\

To find:

The value of the expression

Solution:

(\frac{5^{-1} \times 7^{2}}{5^2\times7^{2}} )^{\frac72}\times( \frac{5^-2 \times 7^3}{5^3\times7^-5})^{\frac{-5}{2}\\\\

Taking all exponents of 5 and 7 to numerators

(5^{-1-2} \times 7^{2+4})^{\frac72}\times( 5^{-2-3} \times 7^{3+5})^\frac{-5}{2}\\\\=( 5^{-3}\times 7^6)^\frac72 \times ( 5^{-5}\times 7^{8})^\frac{-5}{2}

= 5^{-3\times\frac72}  \times  7^{6\times\frac72}   \times 5^ {-5\times\frac{-5}{2}  }\times  7^ { 8 \times \frac  {-5}{2} } \\\\ = 5^ { \frac {-21}{2} +\frac {25}{2} } \times 7^  { 21-20}\\\\=5^2 \times 7\\\\=25 \times 7\\\\=175

Answer:

175

Formulas used :

General rules and formulas of exponents

  1. 1.\,   a^x \times a^y =a^{x+y}\\\\2.\, \frac{ a^x \times b^p } {a^y \times b^q} = a^{x-y} \times b^{ \,p-q}\\\\3.\, ( a^x)^y=a^{xy}
Similar questions