Math, asked by Anonymous, 1 month ago

This is a miscellaneous series and we have to find its sum.

 \frac{1}{2}  +  \frac{2}{3}  +  \frac{3}{4} +  \frac{4}{5} +   ...
Both Numerator and denominator are in AP here.

Kindly solve​

Answers

Answered by pulakmath007
6

SOLUTION

TO DETERMINE

The sum of the series

 \displaystyle \sf{ \frac{1}{2} +  \frac{2}{3}  +  \frac{3}{4}  +  \frac{4}{5} + ... \: ..  }

EVALUATION

Here the given series is

 \displaystyle \sf{ \frac{1}{2} +  \frac{2}{3}  +  \frac{3}{4}  +  \frac{4}{5} + ... \: ..  }

First we check whether the series is convergent or divergent

The given series is of the form

 \displaystyle \sf{ \frac{1}{2} +  \frac{2}{3}  +  \frac{3}{4}  +  \frac{4}{5} + ... \: ..  }

 \displaystyle  \sf{ = \sum\limits_{n=1}^{ \infty }  \:  \frac{n}{n + 1}  }

 \displaystyle  \sf{ = \sum\limits_{n=1}^{ \infty } a_n \:  \:  \:  \: where \:  \:  \: a_n = \frac{n}{n + 1}  }

Now

\displaystyle \sf{ \lim_{n \to  \infty }  \: a_n}

\displaystyle \sf{ =  \lim_{n \to  \infty }  \:  \frac{n}{n + 1} }

\displaystyle \sf{ =  \lim_{n \to  \infty }  \:  \frac{1}{1+  \frac{1}{n} } }

\displaystyle \sf{ =  \frac{1}{1+ 0} }

\displaystyle \sf{ =  1 \:  \ne \: 0 }

Hence the given series is divergent

So the sum of the divergent series can not be determined or tends off to infinity.

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions