This is a simple question
Attachments:
Answers
Answered by
1
Answer:
mod((253⁰),10)=1
mod((253¹),10)=3
mod((253²),10)=9
mod((253³),10)=7
this pattern would get repeated
u can check it by yourself
So generalized pattern is
mod((253⁴n+⁰),10)=1
mod((253⁴n+¹),10)=3
mod((253⁴n+²),10)=9
mod((253⁴n+³),10)=7
as 1002=4(250)+2
mod((253¹⁰⁰²),10)=mod((253⁴(250)+²),10)=9
Answered by
0
Answer:
The answer is 9.
Step-by-step explanation:
mod((253⁰),10)=1
mod((253¹),10)=3
mod((253²),10)=9
mod((253³),10)=7
This pattern is repeated.
The generalized pattern will be:
mod((253⁴n+⁰),10)=1
mod((253⁴n+¹),10)=3
mod((253⁴n+²),10)=9
mod((253⁴n+³),10)=7
as 1002=4(250)+2
mod((253¹⁰⁰²),10)=mod((253⁴(250)+²),10)=9
Therefore the answer is 9.
Similar questions