Math, asked by syedahossain, 5 months ago

this is a trigometrical ratio chapter please please please do this sum and send me now I am requesting to you all​

Attachments:

Answers

Answered by MaIeficent
14

Step-by-step explanation:

Question:-

 If 3θ is an acute angle, solve the following equation for θ:

(cosec 3θ - 2)(cot 2θ - 1) = 0

Given:-

  • (cosec 3θ - 2)(cot 2θ - 1) = 0

To Find:-

  • The value of θ.

Formulas used:-

  • cosec 30° = 2

  • cosec 30° = 2cot 45° = 1

Solution:-

\sf \implies (cosec 3 \theta - 2)(cot 2 \theta - 1) = 0

\sf \underline{cosec 3 \theta - 2  = 0 \:  \:  \:  \: (or)  \:  \:  \: cot 2 \theta - 1= 0}

\sf \implies cosec 3 \theta - 2  = 0

\sf \implies cosec 3 \theta   = 2

\sf \implies cosec 3 \theta   = cosec 30 ^{ \circ}

\sf \implies 3 \theta   =30 ^{ \circ}

\sf \implies \theta   = \dfrac{30 ^{ \circ}}{3}

\sf \dashrightarrow \boxed{\sf\theta   = 10^{ \circ}}

\sf Now, \: \: cot 2 \theta - 1= 0

\sf \implies cot 2 \theta= 1

\sf \implies cot 2 \theta= cot45^{ \circ}

\sf \implies 2\theta= 45^{ \circ}

\sf \implies \theta= \dfrac{ 45^{ \circ}}{2}

\sf \dashrightarrow \boxed{\sf\theta   = 22.5^{ \circ}}

  \large\leadsto\underline{ \boxed{\sf  \therefore \:  \theta=10^{ \circ}    \:  \: (or) \:  \:  \: 22.5^{ \circ} }}


BrainIyMSDhoni: Great :)
Similar questions