Math, asked by Harshleen16, 11 months ago

This is Arithmetic progression
pls help me pls pls pls​

Attachments:

Answers

Answered by VishnuPriya2801
18

Here's your answer..... :)

Attachments:
Answered by deekshantsinghal7996
0

Answer:

Okay so

according to question

 \frac{sm}{sn}  =  \frac{ \frac{m}{2} \times (2a + (n - 1)d )}{ \frac{n}{2}  \times 2a + (n - 1)d)}  =  \frac{m {}^{2} }{n {}^{2} }  \\ now \: 2 \: is \: cancelled \: \\ and \: m  \:  and \: n \: are \: also \: cancelled \:  \\ so \: \frac{  (2a + (m - 1)d )}{   2a + (n - 1)d)}  =  \frac{m}{n}  \\  \\  \\ cros s \: multiply \: \\  \\ n(2a + (m - 1)d ) \:  = m(2a + (n - 1)d ) \\  \\ 2an + dn(m - 1) = 2am +  \: dm(n - 1) \\ 2an - 2am + dn( m- 1) - dm(n - 1) \\ 2a(n - m) + d(mn - n - mn \:  + m) \\ 2a(n - m) + d(m - n) \\ 2a(n - m)  -  d(m - n)  = 0 \\ 2a - d = 0 \\ 2a = d \\

now 2a = d

 \frac{am}{an}  =  \frac{a + (m - 1)d}{a + (n - 1)d}  \\ d = 2a \\ \frac{am}{an}  =  \frac{a + (m - 1)2a}{a + (n - 1)2a}  \\ \frac{am}{an}  =  \frac{a(1 + 2m - 2)}{a(1 + 2n - 2)} \\ \frac{am}{an}  =  \frac{2m - 1}{2n - 1}

Hence proved.

Similar questions