Math, asked by isha2707rao, 11 months ago

this is my question someone solve this​

Attachments:

Answers

Answered by sahil262082
1

hope it helps you. thanks for asking

Attachments:
Answered by Anonymous
6

\huge{\underline{\underline{\green{\mathsf{Answer:}}}}}

Given

\mathsf{cosecθ + cotθ = p  \rightarrow (1)}

\mathsf{Using \:the\: trigonometric\: identity}

\fbox{\mathsf{cosec^2\theta = 1 + cot^2\theta}}

\mathsf{\implies\:cosec^2θ - cot^θ = 1}

Using the identity

\fbox{\mathsf{a^2 - b^2 = (a+b) (a-b) }}

\mathsf{\implies\: (cosecθ + cotθ) (cosecθ - cotθ) = 1}

\mathsf{\implies\:p ( cosecθ - cotθ ) = 1}

\mathsf{\implies\: cosecθ - cotθ = \frac{1}{p}\rightarrow(2) }

Adding (1) and (2) we get

cosecθ + cotθ = p

cosecθ – cotθ = 1/p

—————————————

\mathsf{\implies\: 2cosecθ \: \: \:\:\:\:\:\: = p + \frac{1}{p}}

\mathsf{\implies\: 2cosecθ \: \: \:\:\:\:\:\: =  \frac{p^2 + 1}{p}}

\mathsf{\implies\: cosec\theta \: \: \:\:\:\:\:\: =  \frac{p^2 + 1}{2p}}

\fbox{\mathsf{We\:know\:that,\:\:cosec\theta = \frac{1}{sin\theta}}}

\mathsf{\implies\: sin\theta \: \: \:\:\:\:\:\: =  \frac{2p}{p^2 + 1}}

\fbox{\mathsf{We\:know\:that,\:\:cos\theta = \sqrt{1 - sin^2\theta}}}

\mathsf{\implies\: cos\theta \: \: \:\:\:\:\:\: =  \sqrt{1 - (\frac{2p}{p^2 + 1})^2}}

\mathsf{\implies\: cos\theta \: \: \:\:\:\:\:\: =  \sqrt{\frac{p^4 + 1 + 2p^2 - 4p^2}{(p^2 + 1)^2}}}

\mathsf{\implies\: cos\theta \: \: \:\:\:\:\:\: =  \sqrt{\frac{p^4 + 1 - 2p^2}{(p^2 + 1)^2}}}

\mathsf{\implies\: cos\theta \: \: \:\:\:\:\:\: =  \sqrt{\frac{(p^2 - 1)^2}{(p^2 + 1)^2}}}

\fbox{\mathsf{\implies\: cos\theta \: \: \:\:\:\:\:\: =  \frac{p^2 - 1}{p^2 + 1}}}

Hence Proved

Similar questions