Math, asked by Shubh444, 1 month ago

This is my question
 \tan( \frac{b - c}{2} )  =  \frac{b - c}{b + c}  \cot( \frac{a}{2} )

Answers

Answered by senboni123456
1

Step-by-step explanation:

According to sine rule, we have,

 \frac{ \sin(B) }{b} =  \frac{ \sin(C) }{c}   \\

  \implies\frac{ \sin(B) }{\sin(C)} =  \frac{ b }{c}   \\

 \rarr\tt \red{Applying\:\:componendo\:\:and\:\:dividendo}

  \implies\frac{ \sin(B) + \sin(C)}{ \sin(B)  -  \sin(C) } =  \frac{ b  + c}{b - c}   \\

  \implies\frac{ 2\sin \bigg( \dfrac{B + C}{2} \bigg)\cos \bigg( \dfrac{B  -  C}{2} \bigg)}{ 2 \cos\bigg( \dfrac{B + C}{2} \bigg)\sin \bigg( \dfrac{B  -  C}{2} \bigg)} =  \frac{ b  + c}{b - c}   \\

  \implies\frac{ \sin \bigg( \dfrac{\pi -  A}{2} \bigg)\cos \bigg( \dfrac{B  -  C}{2} \bigg)}{  \cos\bigg( \dfrac{\pi  -  A}{2} \bigg)\sin \bigg( \dfrac{B  -  C}{2} \bigg)} =  \frac{ b  + c}{b - c}   \\

  \implies\frac{ \sin \bigg( \dfrac{\pi}{2} -  \dfrac{  A}{2} \bigg)\cos \bigg( \dfrac{B  -  C}{2} \bigg)}{  \cos\bigg( \dfrac{\pi}{2}   - \dfrac{ A}{2} \bigg)\sin \bigg( \dfrac{B  -  C}{2} \bigg)} =  \frac{ b  + c}{b - c}   \\

  \implies\frac{ \cos \bigg( \dfrac{  A}{2} \bigg)\cos \bigg( \dfrac{B  -  C}{2} \bigg)}{  \sin\bigg( \dfrac{ A}{2} \bigg)\sin \bigg( \dfrac{B  -  C}{2} \bigg)} =  \frac{ b  + c}{b - c}   \\

  \implies \frac{\cos\bigg( \dfrac{ A}{2} \bigg)}{\sin\bigg( \dfrac{ A}{2} \bigg)}  .\frac{\cos \bigg( \dfrac{B  -  C}{2} \bigg)}{  \sin \bigg( \dfrac{B  -  C}{2} \bigg)} =  \frac{ b  + c}{b - c}   \\

  \implies \cot\bigg( \dfrac{ A}{2} \bigg) .\frac{1}{  \tan\bigg( \dfrac{B  -  C}{2} \bigg)} =  \frac{ b  + c}{b - c}   \\

  \implies \frac{b - c}{b + c}  \cot\bigg( \dfrac{ A}{2} \bigg)  =   \tan\bigg( \dfrac{B  -  C}{2} \bigg) \\

    \purple{ \tt \bold{\implies     \tan\bigg( \dfrac{B  -  C}{2} \bigg) =  \frac{b - c}{b + c}   \cot\bigg( \dfrac{ A}{2} \bigg)}} \\

Similar questions