Math, asked by sonusharma45, 4 months ago

this is official question

dont give me wrong answer if u dont know

Attachments:

Answers

Answered by Anonymous
57

{\huge{\rm{\underline{\underline{Answer\checkmark}}}}}

 \rm \: \star \:  refer \: to \: the \: attachment

 \large \:  \rm \: formula \: used :

 \mapsto \rm \:  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  +  {y}^{2}  + xy)

 \mapsto \rm \:  {x}^{3} +  {y}^{3}  = (x + y)( {x}^{2}   +  {y}^{2}  - xy)

 \mapsto \rm \:  {sin}^{2}  \theta +  {cos}^{2}  \theta \:  = 1

Attachments:
Answered by sania200511
3

2

Step-by-step explanation:

\begin{lgathered}Concept:\\a^3+b^3=(a+b)(a^2-ab+b^2)\\a^3-b^3=(a-b)(a^2+ab+b^2)\end{lgathered} </p><p>Concept:

\begin{lgathered}\frac{cos^3\theta+sin^3\theta}{cos\theta+sin\theta}+\frac{cos^3\theta-sin^3\theta}{cos\theta-sin\theta}\\\\=\frac{(cos\theta+sin\theta)(cos^2\theta-cos\theta.sin\theta+sin^2\theta)}{cos\theta+sin\theta}+\frac{(cos\theta-sin\theta)(cos^2\theta+cos\theta.sin\theta+sin^2\theta)}{cos\theta-sin\theta}\\\\=(cos^2\theta-cos\theta.sin\theta+sin^2\theta)+(cos^2\theta+cos\theta.sin\theta+sin^2\theta)\\\\=(cos^2\theta+sin^2\theta)+(cos^2\theta+sin^2\theta)\\\\=1+1= 2\end{lgathered}

Similar questions