Math, asked by monadineshsoni, 9 months ago

this is the question pls answer​

Attachments:

Answers

Answered by CharmingPrince
1

Answer:

Given:

  • x+ \dfrac{1}{x} = 5
  • x^3 - \dfrac{1}{x^3}

Solution:

\implies x + \dfrac{1}{x} = 5

\implies \left(x + \dfrac{1}{x} \right)^2 = 5^2

\implies x^2 + \dfrac{1}{x^2} + 2= 25

\implies x^2 + \dfrac{1}{x^2} = 23

Finding \underline{\bf{x - \dfrac{1}{x}}}:

\implies x^2 + \dfrac{1}{x^2} - 2 = 23 - 2

\implies \left( x - \dfrac{1}{x}\right)^2 = 21

\implies x - \dfrac{1}{x} = \sqrt{21}

Solving further:

\implies \left( x - \dfrac{1}{x} \right)^3 = (\sqrt{21})^3

\implies x^3 - \dfrac{1}{x^3} - 3 \left(x - \dfrac{1}{x}\right) = 21\sqrt{21}

\implies x^3 - \dfrac{1}{x^3} -3(\sqrt{21})= 21\sqrt{21}

\implies x^3 - \dfrac{1}{x^3} = 21 \sqrt{21} + 3\sqrt{21}

\boxed{\implies{\boxed{x^3 - \dfrac{1}{x^3} = 24 \sqrt{21}}}}

Similar questions