English, asked by gifty783, 1 month ago

This moderators , Will not even leave , at the last step to chii​

Answers

Answered by OoINTROVERToO
2

FORMULAE OF DIFFERENTIATION ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  \tt{\dfrac{d}{dx} x^{n} = nx^{n-1}}

  \tt{\dfrac{d}{dx} (constant) = 0} ⠀

 \tt{\dfrac{d}{dx} kf(x) = k. \dfrac{d}{dx} f(x)}

 \tt{\dfrac{d}{dx} (u+v) = \dfrac{du}{dx} + \dfrac{dv}{dx} } ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  \tt{\dfrac{d}{dx} (u-v) = \dfrac{du}{dx} - \dfrac{dv}{dx}}  ⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \tt{\dfrac{d}{dx} (u.v) = u \dfrac{dv}{dx} + v \dfrac{du}{dx}} ⠀⠀⠀⠀⠀⠀

 \tt{\dfrac{d}{dx} (\dfrac{u}{v}) = \dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}}{v^2}}

  \tt{\dfrac{d}{dx} (Cos x) = - sin x}

  \tt{\dfrac{d}{dx} (Sin x) = Cos x}

  \tt{\dfrac{d}{dx} (Tan x) = Sec^2 x}

  \tt{\dfrac{d}{dx} (Cot x) = - Cosec^2 x}

  \tt{\dfrac{d}{dx} (Sec x) = Sec x. Tan x}

  \tt{\dfrac{d}{dx} (Cosec x) = - Cosec x. Cot x}

  \tt{\dfrac{d}{dx} log_{e}(x) = \dfrac{1}{x}}

 \tt{\dfrac{d}{dx} e^x = e^x} ⠀⠀⠀⠀⠀

  \tt{\dfrac{d}{dx} a^x = a^{x} . log_{e}{a}}

Answered by kalpanagoyal903
0

this is your ans

This moderators , Will not even leave , at the last step to chii

and this is your question

Attachments:
Similar questions