Math, asked by sonu1439, 1 year ago

this one divided by 6

Attachments:

Answers

Answered by rakeshmohata
5
Hope you like my process
=======================
 =  > p(n) =  {1}^{2}  +  {2}^{2}  +  {3}^{2}  + .... +  {n}^{2}  =  \frac{n(n + 1)(2n + 1)}{6}  \\  \\  =  > p(1) =  {1}^{2}  =  \frac{1(1 + 1)(2 + 1)}{6}  =  \frac{2 \times 3}{6}  = 1 \\  \\  \bf \:  \: so \:  \: p(1) \: \:  is \:  \: true \:   \\  \\  =  > let \:  \: p(k)  \:  \: be \: true \\  \\ =  >   \bf \: p(k) =  {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ... +  {k}^{2}  =  \frac{k(k + 1)(2k + 1)}{6}  \\  \\  =  > {  \bf \: p(k + 1)} =  {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ... +  {k}^{2}  +  {(k +1 )}^{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{k(k + 1)(2k + 1)}{6}  +  {(k + 1)}^{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   = { \bf(k + 1)}{( \frac{k(2k + 1)}{6} + (k + 1)) } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = { \bf(k + 1)}( \frac{2 {k}^{2}  + k + 6(k + 1)}{6} ) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   = { \bf(k + 1)}( \frac{2 {k}^{2} + k + 6k + 6 }{6} ) \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{(k + 1)}{6} (2 {k}^{2}  + 4k + 3k + 6) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =   \frac{(k + 1)}{6} (2k(k + 2) + 3(k + 2)) \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   =  \frac{(k + 1)(k + 2)(2k + 3)}{6}  =  \bf{  \underline{ \blue{ \frac{(k + 1)((k + 1) + 1)(2(k + 1) + 1)}{6} }}}

Thus P(k) and P(k+1) is true .

Hence P(n) is true for all natural numbers n€N
____________________________
Hope this is your required answer

Proud to help you

deeku004: awesome answer ..
rakeshmohata: thanks alot ❣❤❣
Answered by Anonymous
10
\small\red Answer..

Your answer in this attachment.. ↑↑
Attachments:
Similar questions