Math, asked by yusuftouba, 10 months ago

This one is also trigonometry please answer with a pic

Attachments:

Answers

Answered by renuagrawal393
10

Answer:

 \huge{\blue{\bold{\underline{\mathbb{ÀnsWeR:-}}}}} \\  \\ (1 -  {sin}^{2}  \theta) \times  {sec}^{2}  \theta \:  =1  \: \\  \rightarrow \:   {cos}^{2} \theta \times  {sec}^{2} \theta  = 1 \:   \:  \:  \:  \: ( {sin}^{2}  \theta \:  +  \:  {cos}^{2}  \theta = 1) \\  \rightarrow \:  {cos}^{2}  \theta \times  \frac{1}{ {cos}^{2}  \theta }  = 1 \\  \rightarrow \: 1 = 1 \\ l.h.s = r.h.s \\

 \huge{\bold{ \mathcal{ \blue{hence \: proved}}}}

Hope it helps you....

Answered by 007Boy
3

Question :-

Prove that

(1 -  \sin {}^{2} (x) ) \times  \sec {}^{2} (x)  = 1

Solution :-

Take LHS

(1 -  \sin {}^{2} (x) ) \times  \sec {}^{2} ( x)

As,

1 -  \sin {}^{2} (x)  =  \cos {}^{2} (x)  \\  \\ and \:  \:  \:  \:   \:  \: \sec {}^{2} (x)  =  \frac{1}{ \cos {}^{2} (x) }

Hence,

 \cos {}^{2} (x)  \times  \frac{1}{ \cos {}^{2} (x) }  = 1 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  1 = 1

LHS =RHS - - - (PROVED)

Similar questions