Math, asked by gouravsaed, 1 month ago

this question is integral ans me
{sin}^{4} x
plz ans me​

Answers

Answered by khushinanu
1

qnswer refers to attachment

hope its helpful to you

.

.

.

.

.

Attachments:
Answered by TrustedAnswerer19
5

Answer:

  \displaystyle  \sf \: \int \:  {sin}^{4} x \: dx \\  = \sf \: \int \:( { {sin}^{2}  \: x})^{2}  \: dx \\ \sf \: =  \frac{1}{4}  \int \: { {(2sin}^{2}  \: x})^{2}  \: dx \\ \sf \: =  \frac{1}{4}  \int \:  {(1 - cos \: 2x)}^{2}  \: dx \\ \sf \: =  \frac{1}{4}  \int \:  (1 - 2cos \: 2x +  {cos}^{2}  \: x) \: dx  \\ \sf \: =  \frac{1}{4}  \int \:  (1 - 2cos \: 2x +  \frac{1  + cos \: 4x}{2} ) \: dx \\ \sf \: =  \frac{1}{4}  \int \: ( \frac{3}{2}  - 2cos \: 2x +  \frac{1}{ 2}  \times cos \: 4x) \: dx \\ \sf \: = \frac{1}{4}   \int \:   \frac{3}{2}  \: dx -  \frac{1}{4} \sf \:   \int \: 2cos \: 2x  \: dx+  \frac{1}{4} \sf \:  \int \:  \frac{1}{2}  \times cos \: 4x \: dx \\ \sf \: =   \frac{1}{4} ( \frac{3x}{2}  - sin \: 2x +  \frac{1}{8}  \times sin \: 4x) + c \\  \\  \sf \: where \:  \:  \: c =  \: integral \: constant

Similar questions