Math, asked by sgak50047, 3 days ago

this question is Marathi but you can write your answer in English ​

Attachments:

Answers

Answered by saichavan
22

The given roots are -3 and -7.

 \sf \:  {x}^{2}   - (  \alpha  +  \beta )x + ( \alpha  \beta ) = 0

Let α = -3 and β = -7,

{x}^{2}  -  \lgroup( - 3 ) +   ( - 7) \rgroup  x + ( - 3 \times  - 7) = 0

 {x}^{2} -  ( - 10)x + 21  = 0

 \green{{x}^{2}  + 10x + 21 = 0}

Additional Information:

1) If roots of quadratic equation are given:

x²-(α+β)x + (αβ) = 0

2) α+β = - b/a

3) αβ = c/a

Quadratic equation can be solved by quadratic formula, complete square method, factorisation method.

Answered by Sauron
16

प्रश्न :

ज्या वर्गसमीकरणाची मुळे -3, -7 आहेत असे वर्ग समीकरण तयार करा.

Step-by-step explanation:

सूत्र :

x² - (मुळांची बेरीज) x + मुळांचा गुणाकार = 0

समजा,

α = -3 आणि β = -7

  • α = -3
  • β = -7

α + β = (-3) + (-7) = -10

आणि

α × β = (-3) × (-7) = 21

  • मिळणारे समीकरण,

x² - (मुळांची बेरीज) x + मुळांचा गुणाकार = 0

⇒ x² - (α + β) x + α × β = 0

⇒ x² - (-10) x + 21 = 0

x² + 10x + 21 = 0

वर्ग समीकरण = x² + 10x + 21 = 0

Similar questions