Math, asked by adityadolas2605, 5 months ago

This Question is so much hard so solve it.​

Attachments:

Answers

Answered by MagicalBeast
12

To find :

Value of

\sf \: \: \dfrac{  \tan( \theta)  }{ \dfrac{ { \sin^3( \theta) } }{ \cos( \theta) }  + ( \sin( \theta) \times  \cos( \theta)  )}

Identity used :

\sf \bullet \:   \sin^2( x)   +  {  \cos^2(x)  }  = 1 \\  \\  \sf \bullet \:  \:  \dfrac{ \sin(x) }{ \cos(x) }  =  \tan(x)

Solution :

\sf \implies \: \dfrac{  \tan( \theta)  }{ \dfrac{ { \sin^3( \theta) } }{ \cos( \theta) }  + ( \sin( \theta) \times  \cos( \theta)  )}  \\  \\  \sf \: take \: lcm \: in \: denominator \\ \sf \implies \: \dfrac{ \tan( \theta)  }{ \dfrac{ { \sin^3( \theta) }  \:  +  \{ \:  \cos( \theta) \:  \times   (  \: \sin( \theta) \times  \cos( \theta)  ) \}  }{ \cos( \theta) }  }  \\  \\ \sf \implies \: \dfrac{ \tan( \theta) }{ \dfrac{ { \sin^3( \theta) }  \:  +  \{ \:      \: \sin( \theta) \times  \cos^2( \theta)  \}  }{ \cos( \theta) }  }  \\  \\  \sf \: take \:  \sin( \theta )  \: common \\  \\  \sf \implies \: \dfrac{ \tan( \theta) }{ \dfrac{ \sin( \theta)  \times   \:    \{ \:      \: \sin^2( \theta)   +  \: \cos^2( \theta) \}  }{ \cos( \theta) }  } \\  \\ \sf \implies \: \dfrac{ \tan( \theta) }{ \dfrac{ \sin( \theta)  \times   \:    \{ \: 1\}  }{ \cos( \theta) }  } \\  \\  \sf \implies \: \dfrac{ \tan( \theta)}{ \dfrac{ \sin( \theta)  }{ \cos( \theta) }  } \\  \\  \sf \implies \:  \dfrac{ \tan( \theta) }{ \tan( \theta) }  \\  \\  \sf \implies \:  1

ANSWER : 1

Similar questions