this question is very hard no one can do this.
Answers
OB is perpendicular bisecter of line segment DE,FA perpendicular to DB and FE intersect OB at the point C as shown in figure
Now ∆ OAF and ∆ ODB
Angel OAF =Angel ODB=90deegre
(because DB perpendicular bisector of DE , so OB perpendicular AF and OB perpendicular DE) angel FOA = angel DOB (common angel )
From A-A , ∆ OAF congruent ∆ ODB
Similarly ∆ AFC and ∆ BEC
angel FCA =angel, angel FAC = angel CBE = 90 degree
From A-A, ∆ AFC congruent ∆ BEC so
AF / BE= AC/CB = FC/CE
we know that DE= BE perpendicular bisector of DE is OB
AF / DB=AC/CB=FC/CE
as we have
OA/OB =AF/DB=OF/OD
OA/OB= AC/CB=(OC-OA) /(OB-OC )
OA/OB=(OC-OA) /(OB-OC)
OA(OB-OC)=(OC-OA)OB
OA.OB-OA.OC=OB.OC-OA.OB
2OA.OB=OB.OC+OA.OC
divide by OA.OB.OC
2OAOB/OA.OB.OC=OB.DC/OA.OB.OC +OA.OC/OA.OB.OC
2/OC=1/OA+1/OB
.: 1/OA+1/ OB=2/OC