Math, asked by antrasharma97, 9 months ago

thora sa maths pd lo ab xD


_________________________
centre of the circle passing through points (7,-5),(3,-7),(3,3) is ??
_________________________​

Attachments:

Answers

Answered by BRAINLYADDICTOR
71

★FIND:

\bold{Centre\:of\:the\:circle\:O(x, y)}

★GIVEN,

Three points are

A(7,-5),B(3,-7),C(3,3)

★SOLUTION:

distance \: b/w \:OA\\ =  \sqrt{(x2 - x1) {}^{2} + (y2 - y1) {}^{2}  }   \\  =  \sqrt{(7 - x) {}^{2}  + ( - 5 - y) {}^{2} }  \\ similarly. \\ OB =  \sqrt{(3 - x) {}^{2}  + ( - 7 - y) {}^{2} }

OC = \sqrt{(3 - x) {}^{2}  + (3 - y) {}^{2} }

Radius of the circle are equal

SO,

OA=OB & OB=OC

 \sqrt{(7 - x) {}^{2} + ( - 5 - y) {}^{2}  }  =\\  \sqrt{(3 - x) {}^{2}  + ( - 7 - y) {}^{2} }  \\ b.s \: square \: root \: cancelling \\ =>(7 - x) {}^{2}  + ( - 5 - y) {}^{2}  = (3 - x) {}^{2}  + ( - 7 - y) {}^{2}  \\ =>49 + x {}^{2}  - 14x + 25 + y {}^{2}  + 10y =9 + x {}^{2}  - 6x + 49 + y {}^{2}  + 14y \\=> x {}^{2}  + y {}^{2}  - 14x + 10y + 74 = x {}^{2}  + y {}^{2}  - 6x + 14y + 58 \\ => - 14x + 10y + 74 =  - 6x + 14y +58 \\  =  >  - 6x + 14x + 14y - 10y + 58 - 74 = 0 \\  =  > 8x + 4y - 16 = 0 \\  =  > 2x + y - 4 = 0...eq1\\ similarly. \\ OB=OC

 \sqrt{(3 - x) {}^{2}  + ( - 7 - y) {}^{2} }  = \sqrt{(3 - x) {}^{2} + (3 - y) {}^{2} }  \\ =>(3 - x) {}^{2}  + ( - 7 - y) {}^{2}  = (3 - x) {}^{2}  + (3 - y) {}^{2}  \\=> 9 + x {}^{2}  - 6x + 49 + y {}^{2}  + 14y = 9 + x {}^{2} - 6x + 9 + y {}^{2}   - 6y \\=>  - 6x + 14y + 58 =  - 6x - 6y + 18 \\=> 14y + 58 =  - 6y + 18 \\  =  > 14y + 6y = 18 - 58 \\  =  > 20y = -  40 \\  =  > y =  - 40/20 \\  =  > y =  - 2

sub. \: y =  - 2 \: in \: eq1 \\  =  > 2x + ( - 2) - 4 = 0 \\  =  > 2x - 2 - 4 = 0 \\  =  > 2x - 6 = 0 \\  =  > 2x = 6 \\  =  > x = 6/2 \\  =  > x = 3 \\ so,(x,y) = (3, - 2)

Answered by Anonymous
0

let O (x, y) is the point of circle

if three given points A (3,-7) B (3,3) and C (6,-6)

we know distance between circumference and center is always same. i.e radius .

now,

OA^2=OB^2=OC^2

OA^2=OB^2

=>(x-3)^2+(y+7)^2=(x-3)^2+(y-3)^2

=>(x-3)^2-(x-3)^2=(y-3)^2-(y+7)^2

=> 0=(2y+4)(3)

=> y= -2

now again ,

OB^2=OC^2

(x-3)^2+(y-3)^2=(x-6)^2+(y+6)^2

put y=-2

=>(x-3)^2+(-2-3)^2=(x-6)^2+(-2+6)^2

=>(x-3)^2-(x-6)^2=16-25

=>(2x-9)(3)=-9

=> 2x= -3+9=6

=> x=3

hence center co-ordinate is (3,-2)

Similar questions