Math, asked by geniology89, 10 months ago

Those who are going to answer these 2 questions by showing steps and explanation I am gonna mark them as brainleist but answer should be correct​

Attachments:

Answers

Answered by BrainlyConqueror0901
21

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{(\frac{ {x}^{ - b} }{ {x}^{ - a} })^{c}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{a} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{b}=1}}}\\

\green{\tt{\therefore{(\frac{ {x}^{ - b} }{ {x}^{ - a} })^{a + b}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{c + b} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{c + a} =1}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:  \implies  (\frac{ {x}^{ - b} }{ {x}^{ - a} })^{c}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{a} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{b} \\  \\ \tt:  \implies (\frac{ {x}^{ - b} }{ {x}^{ - a} })^{(a + b)}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{(c + b)} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{(c + a)}

\red{\underline \bold{To \: Find : }} \\  \tt:  \implies  (\frac{ {x}^{ - b} }{ {x}^{ - a} })^{c}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{a} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{b} =  ?\\  \\ \tt:  \implies (\frac{ {x}^{ - b} }{ {x}^{ - a} })^{a + b}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{c + b} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{c + a}  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  (\frac{ {x}^{ - b} }{ {x}^{ - a} })^{c}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{a} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{b}   \\  \\ \tt:  \implies  (\frac{ {x}^{a} }{ {x}^{b} })^{c}  \times (\frac{ {x}^{b} }{ {x}^{c} })^{a} \times (\frac{ {x}^{c} }{ {x}^{a} })^{b} \\  \\ \tt:  \implies  \frac{ {x}^{ac} }{ {x}^{bc} } \times \frac{ {x}^{ab} }{ {x}^{ab} } \times \frac{ {x}^{bc} }{{x}^{ac} } \\  \\  \green{\tt:  \implies 1} \\  \\   \green{\tt \therefore (\frac{ {x}^{ - b} }{ {x}^{ - a} })^{c}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{a} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{b}   = 1} \\  \\  \bold{Similarly : } \\ \tt:  \implies (\frac{ {x}^{ - b} }{ {x}^{ - a} })^{a + b}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{c + b} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{c + a}

\tt:  \implies (\frac{ {x}^{ a} }{ {x}^{b} })^{a + b}  \times (\frac{ {x}^{ b} }{ {x}^{c} })^{c + b} \times (\frac{ {x}^{c} }{ {x}^{ a} })^{c + a} \\  \\ \tt:  \implies (\frac{ {x}^{ ( {a}^{2} + ab) } }{ {x}^{ (ab+  {b}^{2})  } }  \times (\frac{ {x}^{ ({b}^{2} + bc) } }{ {x}^{( {c}^{2} + bc) } }) \times (\frac{ {x}^{( {c}^{2} +  ac) } }{ {x}^{ ( {a}^{2}  + ac)} })\\  \\  \tt:  \implies  \frac{ {x}^{ {b}^{2} + bc +  {c}^{2}   + bc +  {c}^{2}  +  ac} }{ {x}^{ab +  {b}^{2}  + {c}^{2}  + bc +  {a}^{2} + ac  } }  \\  \\ \tt:  \implies  \frac{ {x}^{ {a}^{2}  +  {b}^{2}  +  {c}^{2} + ab +bc + ac  } }{ {x}^{ {a}^{2} +  {b}^{2}   +  {c}^{2} + ab + bc + ac } }  \\  \\  \green{\tt:  \implies 1} \\  \\   \green{\tt \therefore (\frac{ {x}^{ - b} }{ {x}^{ - a} })^{a + b}  \times (\frac{ {x}^{ - c} }{ {x}^{ - b} })^{c + b} \times (\frac{ {x}^{ - a} }{ {x}^{ - c} })^{c + a}  = 1}

Answered by BrainlyMT
17

(i) (x^-b/x^-a)^c × (x^-c/x^-b)^a × (x^-a/x^-c)^b

➫ (x^a-b)^c × (x^b-c)^a × (x^c-a)^b

➫ (x^ac-bc) × (x^ab-ac) × (x^bc-ab)

➫ x^ac-bc+ab-ac+bc-ab

➫ x^ac-ac+ab-ab+bc-bc

➫ x⁰

➫ 1

∴ (x^-b/x^-a)^c × (x^-c/x^-b)^a × (x^-a/x^-c)^b = 1

\green{Answer=1}

(ii) (x^-b/x^-a)^a+b × (x^-c/x^-b)^b+c × (x^-a/x^-c)^c+a

➫ (x^a-b)^a+b × (x^b-c)^b+c × (x^c-a)^c+a

➫ {x^(a-b)(a+b)} × {x^(b-c)(b+c)} × {x^(c-a)(c+a)}

➫ x^(a²-b²) × x^(b²-c²) × x^(c²-a²)

➫ x^a²-b²+b²-c²+c²-b²

➫ x^a²-a²+b²-b²+c²-c²

➫ x⁰

➫ 1

∴ (x^-b/x^-a)^a+b × (x^-c/x^-b)^b+c × (x^-a/x^-c)^c+a = 1

\green{Answer=1}

Similar questions