those who will give this answer I will as the brain list please give me this answer
Attachments:
Answers
Answered by
4
QUESTION :
tan²X/(secX+1) = (1-cosX)/cosX
ANSWER :
LHS =
tan²X/(secX+1)
= (sec²X-1)/(secX+1) ..............(1+tan²X=sec²X)
=(secX-1)(secX+1)/(secX+1)...........(a²-b²=(a+b)(a-b))
=(secX-1)
=(1/cosX) -1
=(1-cosX)/cosX
=RHS
hence proved
NOTE :
1. IDENTITIES USED :
A) trigonometric identities
a)cosA=(1/secA)
b)1+tan²A=sec²A
B) algebraic identities
a)a²-b²=(a+b)(a-b)
2.ADVICE :
while solving such questions try to convert the equation in simplest form
tan²X/(secX+1) = (1-cosX)/cosX
ANSWER :
LHS =
tan²X/(secX+1)
= (sec²X-1)/(secX+1) ..............(1+tan²X=sec²X)
=(secX-1)(secX+1)/(secX+1)...........(a²-b²=(a+b)(a-b))
=(secX-1)
=(1/cosX) -1
=(1-cosX)/cosX
=RHS
hence proved
NOTE :
1. IDENTITIES USED :
A) trigonometric identities
a)cosA=(1/secA)
b)1+tan²A=sec²A
B) algebraic identities
a)a²-b²=(a+b)(a-b)
2.ADVICE :
while solving such questions try to convert the equation in simplest form
satyam141037:
thank you very much
Answered by
2
TO PROVE ,
tan² x / sec x + 1 = 1 - cos x / cos x
PROOF,
tan² x / sec x + 1 = 1 - cos x / cos x
LHS RHS
⇒ sin² x / cos ² / (1/cosx + cos x) = 1 - cos x / cos x
⇒ sin ² x / cos² x /( 1 + cos x / cos x)
⇒ sin² x / cos x / ( 1 + cos x )
⇒sin² x / cosx ( 1+ cos x)
⇒ ( 1 - cos² x ) /cos x ( 1 + cos x)
⇒( 1 - cos x ) ( 1 + cos x) / cos x ( 1 + cos x)
⇒ ( 1 - cos x ) / cos x ( = RHS )
∴ LHS = RHS
( HENCE , PROVED )
Similar questions