Math, asked by rajsonali412, 2 months ago

Three 6 faced dice are thrown together. What is the probability that all three dice don't show the same number on them?
O 11/12
O 3/36
35/36
4/36​

Answers

Answered by nigar18nov
1

Answer:

1/36

Step-by-step explanation:

It all 3 numbers have to be same basically we want triplets. 111, 222, 333, 444, 555 and 666. Those are six in number. Further the three dice can fall in 6 * 6 * 6 = 216 ways.

It all 3 numbers have to be same basically we want triplets. 111, 222, 333, 444, 555 and 666. Those are six in number. Further the three dice can fall in 6 * 6 * 6 = 216 ways.Hence the probability is 6/216 = 1/36.

Answered by amishasingh2311
2

Answer: 35/36

Step-by-step explanation:

Three dice having 6 faces were thrown simultaneously,

The\ total\ no.\ of\ possible\ outcomes=6\times 6\times 6=216

(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6)

(1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5) (1,2,6)

(1,3,1) (1,3,2) (1,3,3) (1,3,4) (1,3,5) (1,3,6)

(1,4,1) (1,4,2) (1,4,3) (1,4,4) (1,4,5) (1,4,6)

(1,5,1) (1,5,2) (1,5,3) (1,5,4) (1,5,5) (1,5,6)

(1,6,1) (1,6,2) (1,6,3) (1,6,4) (1,6,5) (1,6,6)

(2,1,1) (2,1,2) (2,1,3) (2,1,4) (2,1,5) (2,1,6)

(2,2,1) (2,2,2) (2,2,3) (2,2,4) (2,2,5) (2,2,6)

(2,3,1) (2,3,2) (2,3,3) (2,3,4) (2,3,5) (2,3,6)

(2,4,1) (2,4,2) (2,4,3) (2,4,4) (2,4,5) (2,4,6)

(2,5,1) (2,5,2) (2,5,3) (2,5,4) (2,5,5) (2,5,6)

(2,6,1) (2,6,2) (2,6,3) (2,6,4) (2,6,5) (2,6,6)

(3,1,1) (3,1,2) (3,1,3) (3,1,4) (3,1,5) (3,1,6)

(3,2,1) (3,2,2) (3,2,3) (3,2,4) (3,2,5) (3,2,6)

(3,3,1) (3,3,2) (3,3,3) (3,3,4) (3,3,5) (3,3,6)

(3,4,1) (3,4,2) (3,4,3) (3,4,4) (3,4,5) (3,4,6)

(3,5,1) (3,5,2) (3,5,3) (3,5,4) (3,5,5) (3,5,6)

(3,6,1) (3,6,2) (3,6,3) (3,6,4) (3,6,5) (3,6,6)

(4,1,1) (4,1,2) (4,1,3) (4,1,4) (4,1,5) (4,1,6)

(4,2,1) (4,2,2) (4,2,3) (4,2,4) (4,2,5) (4,2,6)

(4,3,1) (4,3,2) (4,3,3) (4,3,4) (4,3,5) (4,3,6)

(4,4,1) (4,4,2) (4,4,3) (4,4,4) (4,4,5) (4,4,6)

(4,5,1) (4,5,2) (4,5,3) (4,5,4) (4,5,5) (4,5,6)

(4,6,1) (4,6,2) (4,6,3) (4,6,4) (4,6,5) (4,6,6)

(5,1,1) (5,1,2) (5,1,3) (5,1,4) (5,1,5) (5,1,6)

(5,2,1) (5,2,2) (5,2,3) (5,2,4) (5,2,5) (5,2,6)

(5,3,1) (5,3,2) (5,3,3) (5,3,4) (5,3,5) (5,3,6)

(5,4,1) (5,4,2) (5,4,3) (5,4,4) (5,4,5) (5,4,6)

(5,5,1) (5,5,2) (5,5,3) (5,5,4) (5,5,5) (5,5,6)

(5,6,1) (5,6,2) (5,6,3) (5,6,4) (5,6,5) (5,6,6)

(6,1,1) (6,1,2) (6,1,3) (6,1,4) (6,1,5) (6,1,6)

(6,2,1) (6,2,2) (6,2,3) (6,2,4) (6,2,5) (6,2,6)

(6,3,1) (6,3,2) (6,3,3) (6,3,4) (6,3,5) (6,3,6)

(6,4,1) (6,4,2) (6,4,3) (6,4,4) (6,4,5) (6,4,6)

(6,5,1) (6,5,2) (6,5,3) (6,5,4) (6,5,5) (6,5,6)

(6,6,1) (6,6,2) (6,6,3) (6,6,4) (6,6,5) (6,6,6)

Probability that all three dice have the same no. is 6 that is

(1,1,1)  (2,2,2)  (3,3,3)  (4,4,4)  (5,5,5)  (6,6,6)

probability that all three dice don't show the same number on them=210/216=35/36.

Similar questions