Math, asked by rakshitamane2008, 3 months ago

Three angles of a quadrilateral are 35, 65 and 128 degrees. Find the measure of the fourth angle?​

Answers

Answered by ayushsingsingh1234
1

Answer:

The measure of the fourth angle is 1 point 65 75 85 135. 2. See answers. Log in to add ... let 4th angle = a. the sum of the angles of quadrilateral = 360.

Answered by SachinGupta01
6

 \large{ \sf \underline{Given   - }}

  \sf \dashrightarrow \: Let  \: us \:  take \:  a \:  quadrilateral  \: ABCD

 \sf Now ,  \: by  \: the  \: given \:  information ,

 \sf \implies \angle{A} = 35 ^{\circ}

 \sf \implies \angle{B} = 65 ^{\circ}

 \sf \implies \angle{C} = 128 ^{\circ}

 \large{ \sf \underline{To \:  find  -   }}

  \sf \dashrightarrow \: Measure \:  of  \: the \:  fourth  \: angle =  \: ?

 \large{ \sf \underline{Solution  -   }}

 \sf \dashrightarrow \: \boxed{{\sf{Sum \ of \ all \ angles \ of \ Quadrilateral  =  360 ^{\circ}}}}

 \bf Now,

 \sf \dashrightarrow \: \sf{\sf \angle A + \angle B + \angle C + \angle D = 360 ^{\circ}}

 \sf \dashrightarrow \: \sf{\sf 35 ^{\circ} + 65^{\circ} + 128 ^{\circ} + \angle D = 360 ^{\circ}}

 \sf \dashrightarrow \: \sf{\sf 228 ^{\circ} + \angle D = 360 ^{\circ}}

 \sf \dashrightarrow \: \sf{\sf  \angle D = 360 ^{\circ} - 228 ^{\circ} }

 \sf \dashrightarrow \: \sf{\sf  \angle D = 132 ^{\circ} }

 \bf Hence,

  \sf \dashrightarrow \:   \underline{\boxed{ \sf Measure \:  of  \: the \:  fourth  \: angle =  \: 132 ^{\circ}}} \: \bigstar

 \quad

 \large{ \sf \underline{Verification  -   }}

 \sf\dashrightarrow \: {\sf 35 ^{\circ} + 65 ^{\circ} + 128 ^{\circ} + \angle D = 360 ^{\circ}}

 \sf\dashrightarrow \: {\sf 35 ^{\circ} + 65 ^{\circ} + 128 ^{\circ} + 132 \degree = 360 ^{\circ}}

 \sf\dashrightarrow \: {\sf 360 ^{\circ} = 360 ^{\circ}}

 \sf\dashrightarrow \: {\sf LHS = RHS }

 \sf\dashrightarrow \: Hence \:  verified  \: !!

━━━━━━━━━━━━━━━━━━━━━━━━━

 \large{ \sf \underline{More \:  information   -   }}

 \sf\dashrightarrow \: Sum  \: of \:  all  \: interior  \: angles \:  of \:  a  \: quadrateral = 360^{\circ}

 \sf\dashrightarrow \: Sum  \: of \:  all  \: interior  \: angles \:  of \:  a  \: triangle = 180^{\circ}

 \sf\dashrightarrow \: Sum  \: of \:  all  \: interior  \: angles \:  of \:  a  \: Hexagon = 720^{\circ}

 \sf\dashrightarrow \: Sum  \: of \:  all  \: interior \:angles\:of \:a\: Pentagon = 540^{\circ}

Similar questions