Math, asked by MrFeast, 9 days ago

Three angles of a quadrilateral are equal and the fourth angle measures 75 degree. What is the measure of each equal angles .
(With steps)
 \\

Answers

Answered by FleurxExotica
5

❒ \:  \: { \underline{ \underline{ \textbf{\textsf{{  \:  \: Given \: : \:}{}}}}}}

Three angles of a quadrilateral are equal and the fourth angle measures 75°

❒ \:  \: { \underline{ \underline{ \textbf{\textsf{{ To Find \: : \:}{}}}}}}

The measure of each equal angles

❒ \:  \: { \underline{ \underline{ \textbf{\textsf{{ Solution \::}{}}}}}}

Let's assume the three angles of the quadrilateral as x.

As, we all know,

Sum of the angles of a quadilateral = 360°

 \therefore \:  \:  \:  \tt \: x + x + x + 75 {}^{ \circ} =  360 {}^{ \circ}\\  \\  \\ ⇢ \:  \:  \:  \:  \:  \:  \:  \:  \tt \: 3x + 75 {}^{ \circ} = 360 {}^{ \circ} \:  \:  \:  \\  \\  \\  \tt \:⇢ \:  \:  \:  \:  \:  \:  \:  \:  \tt \: 3x =  \: 360 {}^{ \circ} - 75 {}^{ \circ} \\  \\  \\ ⇢ \:  \:  \:  \:  \:  \:  \:  \:  \tt \: 3x = 285 {}^{ \circ} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ ⇢ \:  \:  \:  \:  \:  \:  \:  \:  \tt \: x  \:  \: = \:  \:   \frac{285{}^{ \circ}}{3}  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \tt \: ⇢ \:  \:  \:  \:  \:  \:  \:  \:  \tt \: \boxed{ \pmb{ \mathfrak { \purple{x  \:  \: = \:  \:    \:  \: 95 {}^{ \circ}}}}} \:  \bigstar    \:  \\  \\  \\

Hence,

 \\  \circ \: { \textbf{ \textsf{ 1st angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\

\\  \circ \: { \textbf{ \textsf{2nd angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\

\\  \circ \: { \textbf{ \textsf{3rd angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\

\\  \circ \: { \textbf{ \textsf{4th angle}}} = { \pmb{ \mathfrak { \bold{ 75 ^{ \circ}}}}} \\

________________________________________

❒ \:  \: { \underline{ \underline{ \textbf{\textsf{{ Verification \::}{}}}}}}

 \\ { \pmb{ \textsf{★ Sum of all the angles of the quadrilateral = 360°}}}  \\

⇢ \:  \:  \:  \:  \:  \tt \: x + x + x + 75 {}^{ \circ} =  360 {}^{ \circ} \\

Substituting the value of x :

  \\  ⇢ \:  \tt \: 95 {}^{ \circ} + 95 {}^{ \circ} + 95 {}^{ \circ} + 75 {}^{ \circ} =  360 {}^{ \circ} \\  \\  \\ ⇢ \:  \:  \:  \tt \: 360 {}^{ \circ} = 360 {}^{ \circ} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\   \therefore \:  \: \purple{ \pmb{\textbf{L.H.S = R.H.S}}} \\  \\

 \\

@MrCyber

Answered by kashishkumawat27
15

Answer:

❒ \: \: { \underline{ \underline{ \textbf{\textsf{{ \: \: Given \: : \:}{}}}}}}❒

Given :

Three angles of a quadrilateral are equal and the fourth angle measures 75°

❒ \: \: { \underline{ \underline{ \textbf{\textsf{{ To Find \: : \:}{}}}}}}❒

To Find :

The measure of each equal angles

❒ \: \: { \underline{ \underline{ \textbf{\textsf{{ Solution \::}{}}}}}}❒

Solution :

Let's assume the three angles of the quadrilateral as x.

As, we all know,

Sum of the angles of a quadilateral = 360°

\begin{gathered} \therefore \: \: \: \tt \: x + x + x + 75 {}^{ \circ} = 360 {}^{ \circ}\\ \\ \\ ⇢ \: \: \: \: \: \: \: \: \tt \: 3x + 75 {}^{ \circ} = 360 {}^{ \circ} \: \: \: \\ \\ \\ \tt \:⇢ \: \: \: \: \: \: \: \: \tt \: 3x = \: 360 {}^{ \circ} - 75 {}^{ \circ} \\ \\ \\ ⇢ \: \: \: \: \: \: \: \: \tt \: 3x = 285 {}^{ \circ} \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ ⇢ \: \: \: \: \: \: \: \: \tt \: x \: \: = \: \: \frac{285{}^{ \circ}}{3} \: \: \: \: \: \: \: \\ \\ \\ \tt \: ⇢ \: \: \: \: \: \: \: \: \tt \: \boxed{ \pmb{ \mathfrak { \purple{x \: \: = \: \: \: \: 95 {}^{ \circ}}}}} \: \bigstar \: \\ \\ \\ \end{gathered}

∴x+x+x+75

=360

⇢3x+75

=360

⇢3x=360

−75

⇢3x=285

⇢x=

3

285

x=95

x=95

Hence,

\begin{gathered} \\ \circ \: { \textbf{ \textsf{ 1st angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\ \end{gathered}

∘ 1st angle=

95

95

\begin{gathered}\\ \circ \: { \textbf{ \textsf{2nd angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\ \end{gathered}

∘ 2nd angle=

95

95

\begin{gathered}\\ \circ \: { \textbf{ \textsf{3rd angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\ \end{gathered}

∘ 3rd angle=

95

95

\begin{gathered}\\ \circ \: { \textbf{ \textsf{4th angle}}} = { \pmb{ \mathfrak { \bold{ 75 ^{ \circ}}}}} \\ \end{gathered}

∘ 4th angle=

75

75

________________________________________

❒ \: \: { \underline{ \underline{ \textbf{\textsf{{ Verification \::}{}}}}}}❒

Verification :

\begin{gathered} \\ { \pmb{ \textsf{★ Sum of all the angles of the quadrilateral = 360°}}} \\ \end{gathered}

★ Sum of all the angles of the quadrilateral = 360°

★ Sum of all the angles of the quadrilateral = 360°

\begin{gathered}⇢ \: \: \: \: \: \tt \: x + x + x + 75 {}^{ \circ} = 360 {}^{ \circ} \\ \end{gathered}

⇢x+x+x+75

=360

Substituting the value of x :

\begin{gathered} \\ ⇢ \: \tt \: 95 {}^{ \circ} + 95 {}^{ \circ} + 95 {}^{ \circ} + 75 {}^{ \circ} = 360 {}^{ \circ} \\ \\ \\ ⇢ \: \: \: \tt \: 360 {}^{ \circ} = 360 {}^{ \circ} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \therefore \: \: \purple{ \pmb{\textbf{L.H.S = R.H.S}}} \\ \\ \end{gathered}

⇢95

+95

+95

+75

=360

⇢360

=360

L.H.S = R.H.S

L.H.S = R.H.S

\begin{gathered} \\ \end{gathered}

Similar questions