Three angles of a quadrilateral are equal and the fourth angle measures 75 degree. What is the measure of each equal angles .
(With steps)
Answers
Three angles of a quadrilateral are equal and the fourth angle measures 75°
The measure of each equal angles
Let's assume the three angles of the quadrilateral as x.
As, we all know,
Sum of the angles of a quadilateral = 360°
Hence,
________________________________________
Substituting the value of x :
@MrCyber
Answer:
❒ \: \: { \underline{ \underline{ \textbf{\textsf{{ \: \: Given \: : \:}{}}}}}}❒
Given :
Three angles of a quadrilateral are equal and the fourth angle measures 75°
❒ \: \: { \underline{ \underline{ \textbf{\textsf{{ To Find \: : \:}{}}}}}}❒
To Find :
The measure of each equal angles
❒ \: \: { \underline{ \underline{ \textbf{\textsf{{ Solution \::}{}}}}}}❒
Solution :
Let's assume the three angles of the quadrilateral as x.
As, we all know,
Sum of the angles of a quadilateral = 360°
\begin{gathered} \therefore \: \: \: \tt \: x + x + x + 75 {}^{ \circ} = 360 {}^{ \circ}\\ \\ \\ ⇢ \: \: \: \: \: \: \: \: \tt \: 3x + 75 {}^{ \circ} = 360 {}^{ \circ} \: \: \: \\ \\ \\ \tt \:⇢ \: \: \: \: \: \: \: \: \tt \: 3x = \: 360 {}^{ \circ} - 75 {}^{ \circ} \\ \\ \\ ⇢ \: \: \: \: \: \: \: \: \tt \: 3x = 285 {}^{ \circ} \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ ⇢ \: \: \: \: \: \: \: \: \tt \: x \: \: = \: \: \frac{285{}^{ \circ}}{3} \: \: \: \: \: \: \: \\ \\ \\ \tt \: ⇢ \: \: \: \: \: \: \: \: \tt \: \boxed{ \pmb{ \mathfrak { \purple{x \: \: = \: \: \: \: 95 {}^{ \circ}}}}} \: \bigstar \: \\ \\ \\ \end{gathered}
∴x+x+x+75
∘
=360
∘
⇢3x+75
∘
=360
∘
⇢3x=360
∘
−75
∘
⇢3x=285
∘
⇢x=
3
285
∘
⇢
x=95
∘
x=95
∘
★
Hence,
\begin{gathered} \\ \circ \: { \textbf{ \textsf{ 1st angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\ \end{gathered}
∘ 1st angle=
95
∘
95
∘
\begin{gathered}\\ \circ \: { \textbf{ \textsf{2nd angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\ \end{gathered}
∘ 2nd angle=
95
∘
95
∘
\begin{gathered}\\ \circ \: { \textbf{ \textsf{3rd angle}}} = { \pmb{ \mathfrak { \bold{ 95 ^{ \circ}}}}} \\ \end{gathered}
∘ 3rd angle=
95
∘
95
∘
\begin{gathered}\\ \circ \: { \textbf{ \textsf{4th angle}}} = { \pmb{ \mathfrak { \bold{ 75 ^{ \circ}}}}} \\ \end{gathered}
∘ 4th angle=
75
∘
75
∘
________________________________________
❒ \: \: { \underline{ \underline{ \textbf{\textsf{{ Verification \::}{}}}}}}❒
Verification :
\begin{gathered} \\ { \pmb{ \textsf{★ Sum of all the angles of the quadrilateral = 360°}}} \\ \end{gathered}
★ Sum of all the angles of the quadrilateral = 360°
★ Sum of all the angles of the quadrilateral = 360°
\begin{gathered}⇢ \: \: \: \: \: \tt \: x + x + x + 75 {}^{ \circ} = 360 {}^{ \circ} \\ \end{gathered}
⇢x+x+x+75
∘
=360
∘
Substituting the value of x :
\begin{gathered} \\ ⇢ \: \tt \: 95 {}^{ \circ} + 95 {}^{ \circ} + 95 {}^{ \circ} + 75 {}^{ \circ} = 360 {}^{ \circ} \\ \\ \\ ⇢ \: \: \: \tt \: 360 {}^{ \circ} = 360 {}^{ \circ} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \therefore \: \: \purple{ \pmb{\textbf{L.H.S = R.H.S}}} \\ \\ \end{gathered}
⇢95
∘
+95
∘
+95
∘
+75
∘
=360
∘
⇢360
∘
=360
∘
∴
L.H.S = R.H.S
L.H.S = R.H.S
\begin{gathered} \\ \end{gathered}