Physics, asked by Amritha6576, 11 months ago

Three blocks A, B and C having masses 3kg, 2kg
and x kg respectively are attached by massless
strings and ideal pulleys as shown in figure. When
the system is released from rest if the block C
remaining stationary, the mass of block C is​

Attachments:

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Mass\:of\:block\:C\approx1.6\:kg}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Mass \: of \: block \: A = 3 \: kg \\  \\ \tt: \implies Mass \: of \: block \: B = 2 \: kg  \\  \\ \red{\underline \bold{To \: Find :}} \\ \tt: \implies Mass \: of \: block \:  C =  ?

• According to given question :

 \bold{For \: block \: A} \\  \tt:  \implies T-mg= ma \\  \\ \tt :  \implies  2T - 3g = 3 \times  \frac{a}{2}  \\  \\  \tt:  \implies 2T- 3g =  \frac{3a}{2}   -  -  -  -  - (1) \\  \\  \bold{For \: block \:B} \\  \tt:  \implies  mg - T= ma \\  \\ \tt:  \implies  2g  - T= 2a   \\  \\ \tt:  \implies 4g - 2T= 4a -  -  -  -  - (2) \\  \\  \text{Adding \: (1) \:and\: (2)} \\  \tt:  \implies 4g - 3g =  \frac{3a}{2}   +  4a \\  \\ \tt:  \implies  g =   \frac{3a + 8a}{2}  \\  \\ \tt:  \implies g =  \frac{11a}{2}  \\  \\ \tt:  \implies a =  \frac{2g}{11}  \\  \\  \text{Putting \: value \: of \: a \: in \: (2)} \\ \tt:  \implies 2g - T=2 \times  \frac{2g}{11}  \\  \\ \tt:  \implies T=  \frac{22g - 4g}{11}  \\  \\ \tt:  \implies T=  \frac{18g}{11}  \\  \\  \bold{For \: block \: C} \\  \tt:  \implies t = mg \\  \\ \tt:  \implies  \frac{18g}{11}  = mg \\  \\  \tt:  \implies m =  \frac{18g}{11g}  \\  \\ \tt:  \implies m =  \frac{18}{11}  \\  \\  \green{\tt:  \implies m \approx 1.6 \: kg}

Attachments:
Answered by Saby123
3

</p><p>\tt{\huge{\pink{Hello!!! }}}

</p><p>\tt{\purple{---------------}}

</p><p>\tt{\huge{\boxed {\boxed {\implies {\bullet{\purple{Question \: - }}}}}}}

Three blocks A, B and C having masses 3kg, 2kg and x kg respectively are attached by massless strings and ideal pulleys as shown in figure.

When the system is released from rest if the block C remaining stationary, the mass of block C is ?

</p><p>\tt{\purple{---------------}}

</p><p>\tt{\huge{\boxed {\boxed {\implies {\bullet{\purple{Solution \: - }}}}}}}

For Block A :

</p><p>\tt{\blue{T − mg = ma}}

</p><p>\tt{\red{2T−3g=3× 2a}} .......(1)

For Block B :

For Block C :

Attachments:
Similar questions