Physics, asked by goyalritu547, 7 months ago

three charges 5uc and 10uc and –5uc are fixed at corner of an equilateral triangle of side 5 cm . find the coulomb force on A due to B and C​

Answers

Answered by Anonymous
2

Given ,

Three charges 5 uc and 10 uc and -5 uc are fixed at corner of an equilateral triangle of side 5 cm

We know that , the force b/w two charges is given by

 \boxed{ \tt{F = k \frac{ q_{1}q_{2} }{ {(r)}^{2} } }}

Thus ,

Force on A due to B will be :

 \tt \implies F_{AB} = \frac{9 \times  {(10)}^{9} \times 5 \times  {(10)}^{ - 6} \times10 \times   {(10)}^{ - 6}   }{  {\{ 5 \times  {(10)}^{ - 2} \}}^{2} }

\tt \implies F_{AB} = \frac{45 \times 10 \times  {(10)}^{ - 3} }{25 \times  {(10)}^{ - 4} }

\tt \implies F_{AB} = \frac{45 \times 2 \times 10}{5}

\tt \implies F_{AB} =180 \:  \: newton

Force on A due to C will be :

\tt \implies F_{AC} =  \frac{9 \times  {(10)}^{9} \times 5  \times  {(10)}^{ - 6} \times 5 \times  {(10)}^{ - 6}  }{ { \{5 \times  {(10)}^{ - 2} \} }^{2} }

\tt \implies F_{AC} = \frac{9 \times 25 \times  {(10)}^{ - 3} }{25 \times  {(10)}^{ - 4} }

\tt \implies F_{AC} =90 \:  \: newton

Now , the magnitude of resultant force will be

\tt \implies F =  \sqrt{ {(90)}^{2} +  {(180)}^{2}  + 2 \times 90 \times 180 \times  \cos(120)  }

\tt \implies F =  \sqrt{8100  + 32400 + 2 \times 90 \times 180 \times (  - \frac{1}{2} )}

\tt \implies F =  \sqrt{8100 + 32400 - 16200}

\tt \implies F =  \sqrt{24300}

\tt \implies F = 115.8 \:  \: newton

The force on A due to B and C is 115.8 N

Attachments:
Similar questions