Physics, asked by ipsitsharma9051, 9 months ago

Three charges all q=10 are placed at the edge of an equilateral triangle of side 2m . find the net potential energy of the system

Answers

Answered by BrainlyConqueror0901
25

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{P.E_{Net}=1.35\:J}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Three \: charges = 10 \mu \: C \:  \:  \:   \: (each) \\  \\ \tt: \implies Side \: of \: equilateral \: triangle = 2 \: m \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt: \implies P.E_{Net} = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies No. \: of \: pairs =  \frac{n(n - 1)}{2}  \\  \\ \tt:  \implies No. \: of \: pairs =    \frac{3 \times (3 - 1)}{2}  \\  \\   \green{\tt:  \implies No. \: of \: pairs =  3}\\  \\ \bold{As \: we \: know \: that}  \\  \tt:\implies P.E_{Net} =  \frac{k  q_{1}q_{2}}{r_{12} }  +  \frac{kq_{2}q_{3}}{ r_{23}}   +  \frac{kq_{1}q_{3}}{ r_{13} }  \\  \\ \tt:\implies PE._{Net} = \frac{k \times q \times q}{2}  +  \frac{k \times q \times q}{2}  +  \frac{k \times q \times q}{2}  \\  \\ \tt:\implies P.E_{Net} = \frac{k {q}^{2} }{2}  \times 3 \\  \\ \tt:\implies P.E_{Net} =  \frac{3k {q}^{2} }{2}  \\  \\ \tt:\implies P.E_{Net} = \frac{3 \times 9 \times  {10}^{9}  \times 100 \times  {10}^{ - 12}  }{2}  \\  \\ \tt:\implies P.E_{Net} = \frac{27 \times  {10}^{9 - 10} }{2}  \\  \\ \tt:\implies P.E_{Net} = \frac{27 \times   {10}^{ - 1}  }{2}  \\  \\  \green{\tt:\implies P.E_{Net} =1.35 \: J}

Attachments:
Answered by ShivamKashyap08
19

Answer:

  • The Potential Energy is 1.35 × 10¹² J

Given:

  • There are three Charges of 10 C.
  • Side of triangle (r) = 2 m.

Explanation:

\rule{300}{1.5}

Firstly finding the pairs of charges contributing to potential energy.and, for finding we know,

N = n (n - 1) / 2

Here,

  • N Denotes no. of pairs of charge.
  • n Denotes given amount of charge.

Substituting the values,

⇒ N = 3 × (3 - 1)/2

⇒ N = 3 × 2 / 2

N = 3

∴ There will be three pairs of charges contributing to the potential energy of the system.

They will be,

  • Pair of q₁ and q₂
  • Pair of q₁ and q₃  and,
  • Pair of q₂ and q₃

\setlength{\unitlength}{1cm}\thicklines\begin{picture}(10,6)\put(2,2){\line(1,1){3}}\put(2,2){\line(1,0){6}}\put(8,2){\line(-1,1){3}}\put(1.7,1.8){$\sf q_2$}\put(8.1,1.8){$\sf q_3$}\put(4.9,5.2){$\sf q_1$}\put(4.5,1){\vector(-1,0){2.5}}\put(5.5,1){\vector(1,0){2.5}}\put(4.75,1){2 m}\put(7,-1){$\Bigg[\sf q_{1}=q_{2}=q_{3}= q=10\;C\Bigg]$}\end{picture}

Now, Let's find the potential energy,

\displaystyle\longrightarrow\sf U=\dfrac{1}{4\;\pi\epsilon_{o}}\times \Bigg\lgroup \dfrac{q_{1}\;q_{2}}{r}+\dfrac{q_{1}\;q_{3}}{r}+\dfrac{q_{2}\;q_{3}}{r}\Bigg\rgroup\\\\\\\longrightarrow\sf U=\dfrac{1}{4\;\pi\epsilon_{o}}\times \Bigg\lgroup \dfrac{q^{2}}{r}+\dfrac{q^{2}}{r}+\dfrac{q^{2}}{r}\Bigg\rgroup\ \ \ \because\bigg[q_{1}=q_{2}=q_{3}\bigg]\\\\\\\longrightarrow\sf  U=\dfrac{1}{4\;\pi\epsilon_{o}}\times3 \Bigg\lgroup \dfrac{q^{2}}{r}\Bigg\rgroup

\\

\longrightarrow\sf U=9\times 10^{9}\times 3\times \dfrac{(10)^{2}}{2}\\\\\\\longrightarrow\sf U=27\times 10^{9}\times\dfrac{100}{2}\\\\\\\longrightarrow\sf U=27\times 10^{9}\times 50\\\\\\\longrightarrow\sf U=1.35\times 10^{12}\\\\\\\longrightarrow \large{\underline{\boxed{\red{\sf U=1.35\times 10^{12}\;J}}}}

The Potential Energy is 1.35 × 10¹² J.

\rule{300}{1.5}


Anonymous: Well done Warrior !
ShivamKashyap08: Thank you Vijay! :D
Similar questions