Three circles are placed on a plane in such a way that each circle just touches the other two , each having a radius of 10cm. Find the area of region enclosed by them.
Answers
Step-by-step explanation:
⇒ Here, AB=BC=AC=10+10=20cm
∴ △ABC is equilateral triangle.
∴ ∠A=∠B=∠C=60
o
⇒ Let a=20cm
⇒ Area of equilateral △ABC=
4
3
×a
2
⇒ Area of equilateral △ABC=
4
3
×(20)
2
∴ Area of equilateral △ABC=
4
400×
3
=173.20cm
2
⇒ Here, θ=60
o
and r=10cm
⇒ Area of 3 sectors =3×
360
o
θ
πr
2
⇒ Area of 3 sectors =3×
360
o
60
o
×
7
22
×(10)
2
∴ Area of 3 sectors =3×52.38=157.14cm
2
⇒ Required area = Area of equilateral triangle - Area of 3 sectors.
⇒ Required area =173.20−157.14=16.06cm
2
Step-by-step explanation:
⇒ Here, AB=BC=AC=10+10=20cm
∴ △ABC is equilateral triangle.
∴ ∠A=∠B=∠C=60°
⇒ Let a=20cm
⇒ Area of equilateral △ABC = √3/4 × a²
⇒ Area of equilateral △ABC = √3/4 × (20)²
⇒ Area of equilateral △ABC = 400 × √3 / 4
⇒ Area of equilateral △ABC = 173.20 cm²
⇒ Here, θ=60° and r =10cm
⇒ Area of 3 sectors =3× θ/360° × πr²
⇒ Area of 3 sectors =3× 60°/360° ×22/7 × (10)²
∴ Area of 3 sectors =3×52.38=157.14 cm²
⇒ Required area = Area of equilateral triangle - Area of 3 sectors.
⇒ Required area =173.20−157.14=16.06 cm²