Math, asked by riaritushalu, 30 days ago

three circles with centres A,B and C touch externally each other.The radius of circle center A is x cm, radius of circle with center B has radius 6cm and with centre C has radius 20cm if Angle BAC =90degree,frame an equation in X and solve for it.


the answer from the answer sheet is 4cm.

please if you answer it correctly I will mark ‼️ you as brainlist

Attachments:

Answers

Answered by MяMαgıcıαη
214

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\textsf{\textbf{Question\::}}}

Three circles with centres A , B and C touch externally each other. Radius of circle with center A is x cm, radius of circle with center B has radius 6 cm and with centre C has radius 20 cm , if Angle BAC = 90°, frame an equation in x and solve for it.

\underline{\textsf{\textbf{Given\::}}}

  • Radius of circle with center A = x cm
  • Radius of circle with center B = 6 cm
  • Radius of circle with center C = 20 cm
  • Measure of angle BAC = 90°

\underline{\textsf{\textbf{To\:find\::}}}

  • Radius of circle with center A , i.e , we had to find value of x ?

\underline{\textsf{\textbf{Solution\::}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Finding the length of AB :

:\implies\:\sf Length\:of\:AB\:=\:Radius_{(circle\:with\:center\:A)}\:+\:Radius_{(circle\:with\:center\:B)}

:\implies\:\bf{Length\:of\:AB\:=\:\red{(x + 6)\:cm}}

Finding the length of BC :

:\implies\:\sf Length\:of\:BC\:=\:Radius_{(circle\:with\:center\:B)}\:+\:Radius_{(circle\:with\:center\:C)}

:\implies\:\sf Length\:of\:BC = 6 + 20

:\implies\:\bf{Length\:of\:BC\:=\:\red{26\:cm}}

Finding the length of AC :

:\implies\:\sf Length\:of\:AC\:=\:Radius_{(circle\:with\:center\:A)}\:+\:Radius_{(circle\:with\:center\:C)}

:\implies\:\bf{Length\:of\:AC\:=\:\red{(x + 20)\:cm}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Now,

Using pythagoras on triangle ABC :

\dashrightarrow\:\sf BC^{2} = AB^{2} + AC^{2}

Values that we have :

  • BC = 26 cm
  • AB = (x + 6) cm
  • AC = (x + 20) cm

Putting all values :

\dashrightarrow\:\sf (26)^{2} = (x + 6)^{2} + (x + 20)^{2}

\tiny \dag \: {\underline{\sf{Using\: identity\: \red{[(a + b)^2 = a^2 + b^2 + 2ab]}\:on\: \red{(x + 6)^2}\: and\: \red{(x + 20)^2}\::}}}

\dashrightarrow\:\sf 676 = [x^2 + (6)^2 + 2(x)(6)] + [x^2 + (20)^2 + 2(x)(20)]

\dashrightarrow\:\sf 676 = x^2 + 36 + 12x + x^2 + 400 + 40x

\dashrightarrow\:\sf 676 = x^2 + x^2 + 36 + 400 + 40x + 12x

\dashrightarrow\:\sf 676 = 2x^2 + 436 + 52x

\dashrightarrow\:\sf 0 = 2x^2 + 436 + 52x - 676

\dashrightarrow\:\sf 0 = 2x^2 + 52x + 436 - 676

\dashrightarrow\:\sf 2x^2 + 52x - 240 = 0

\dashrightarrow\:\sf 2(x^2 + 26x - 120) = 0

\dashrightarrow\:\sf x^2 + 26x - 120 = \dfrac{0}{2}

\dashrightarrow\:\sf x^2 + 26x - 120 = 0

  • Quadratic equation formed !!

Solving it by middle splitting method :

\dashrightarrow\:\sf x^2 + 30x - 4x - 120 = 0

\dashrightarrow\:\sf x(x + 30) - 4(x + 30) = 0

\dashrightarrow\:\sf (x - 4)\:( x + 30) = 0

\dashrightarrow\:\sf x - 4 = 0\:,\:x + 30 = 0

\dashrightarrow\:\bf{ x = \red{4}\:,\:x = \red{-30}}

  • Radius can't be negative !!

We will reject x = -30 !!

\small\underline{\boxed{\sf{\therefore\:Radius\:of\:circle\:with\:center\:A\:=\:x\:=\:\rm\purple{4\:cm}}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\underline{\textsf{\textbf{Note\::}}}

  • Dear user , if you are site (Brainly.in) user. Then don't worry , answer will be correctly displayed to you.

  • But if you uses the app (Brainly) , please swipe right of the screen to see the full answer.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬


MystícPhoeníx: Nice ! Keep it Up :D
Answered by llSugargeniusll
2

\huge\tt\red{Q}\tt\pink{U}\tt\blue{E}\tt\green{S}\tt\purple{T}\tt\orange{I}\tt\orange{O}\huge\tt\red{N}

Three circles with centres A , B and C touch externally each other. Radius of circle with center A is x cm, radius of circle with center B has radius 6 cm and with centre C has radius 20 cm , if Angle BAC = 90°, frame an equation in x and solve for it.

\huge\tt\red{❥}\tt\pink{A}\tt\blue{N}\tt\green{S}\tt\purple{W}\tt\orange{E}\tt\orange{R}\huge\tt\purple{᭄}

Answer is Attached

Thanks!!Σ ◕ ◡ ◕

Hope it helps u

Mark me as brainliest

Mïss/$håñü♥

Attachments:
Similar questions