Math, asked by adityathegamefic1729, 2 days ago

Three congruent circles have a common point 0 and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the in-centre and the circum-centre of the triangle and the common point 0 are collinear.​

Answers

Answered by hridhitarakshit
0
Problem 1

$\displaystyle P$ is a point inside a given triangle $\displaystyle ABC$. $\displaystyle D, E, F$ are the feet of the perpendiculars from $\displaystyle P$ to the lines $\displaystyle BC, CA, AB$, respectively. Find all $\displaystyle P$ for which

$\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PF}$

is least.




Mark me Brainly:)
Similar questions