Math, asked by mhm7de2epurlavangraw, 1 year ago

three consecutive natural numbers ae such that the square of the middle number exceeds the difference of the squares of the other two numbers by 60

Answers

Answered by Anonymous
2
the three consecutive natural numbers are 9.10 and 11
Answered by Salmonpanna2022
1

Step-by-step explanation:

Let the three consecutive natural numbers be x,x+1, x+2.

Given that Square of the middle number exceeds the difference of the squares of the other two by 60.

(x + 1)^2 = (x + 2)^2 - (x)^2 + 60

x^2 + 1 + 2x = x^2 + 4 + 4x - x^2 + 60

x^2 + 1 + 2x = 4x+ 64

x^2 = 4x + 64 - 2x - 1

x^2 = 2x + 63

x^2 - 2x - 63 = 0

x^2 - 9x + 7x - 63 = 0

x(x - 9) + 7(x - 9) = 0

(x - 9)(x + 7) = 0

x = 9,-7.

x value cannot be -ve, so, x = 9.

Then,

x + 1 = 10

x + 2 = 11.

Therefore the three natural numbers are 9,10,11.

Verification:

(x + 1)^2 - (x + 2)^2 + x^2 = 60

10^2 - 11^2 + 9^2 = 60

100 - 121 + 81 = 60

-21 + 81 = 60

60 = 60.

Hope this helps!

Similar questions