three consecutive odd natural numbers are such that the product of the first and third is greater than 4 times the middle by 1 find the numbers
Answers
Let three consecutive odd natural numbers be M, M + 2, M + 4.
Product of first and third number is greater than four times the middle one by one.
We have..
First number = M
Second number = M + 2
Third number = M + 4
According to question,
=> M(M + 4) = 4(M + 2) + 1
=> M² + 4M = 4M + 8 + 1
=> M² + 4M = 4M + 9
=> M² + 4M - 4M = 9
=> M² = 9
=> M = 3
=> M = +3
(-3 neglected)
So,
First number = M
=> 3
Second number = M + 2
=> 3 + 2
=> 5
Third number = M + 4
=> 3 + 4
=> 7
∴ Numbers are 3, 5 and 7.
Answer:
here your answer...........
Step-by-step explanation:
let the three consecutive odd natural
numbers be a, a+2, a+4.
According to question
the product of the first and third is greater than 4 times the middle by 1
then
a(a+4)=4(a+2)+1
a^2+4a=4a+8+1
a^2=9
a=3 and -3 (negative signs neglected)
a=3
therefore the numbers are,
a=3
a+2=3+2=5
a+4=3+4=7