Math, asked by harsh181881, 9 months ago

Three consecutive vertices of a parallelogram ABCD are A(10,-6), B(2, -6) and C(-4,-2), find the fourth vertex D.​

Answers

Answered by MaheswariS
7

\underline{\textbf{Given:}}

\textsf{Three consecutive verrtices of a parallelogram ABCD are}

\mathsf{A(10,-6),B(2,-6),C(-4-2)}

\underline{\textbf{To find:}}

\textsf{Fourth vertex D}

\underline{\textbf{Solution:}}

\textsf{Let the fourth vertex be D(x,y)}

\textsf{We know that,}

\boxed{\textbf{Diagonals of parallelogram bisect each other}}

\textsf{Mid point of AC=Mid point of BD}

\mathsf{\left(\dfrac{10+(-4)}{2},\dfrac{-6+(-2)}{2}\right)=\left(\dfrac{2+x}{2},\dfrac{-6+y}{2}\right)}

\mathsf{\left(\dfrac{6}{2},\dfrac{-8}{2}\right)=\left(\dfrac{2+x}{2},\dfrac{-6+y}{2}\right)}

\mathsf{\left(3,-4\right)=\left(\dfrac{2+x}{2},\dfrac{-6+y}{2}\right)}

\mathsf{\dfrac{2+x}{2}=3\,\implies\,2+x=6\,\implies\,x=4}

\mathsf{\dfrac{-6+y}{2}=-4\,\implies\,-6+y=-8\,\implies\,y=-2}

\therefore\textbf{Fourth vertex is (4,-2)}

Answered by Aditya20138S
0

The above answer is correct

Similar questions