Math, asked by anupkumarsrivastava1, 1 year ago

three cows are tethred with 10m long rope at the corner of a triangular side 42m 20m and 34m find the area of the plot which can be grassed by the cow​

Answers

Answered by Anonymous
3

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

For a triangle with the sides a, b, c, and of half perimeter s,

\implies\boxed{ Area =\sqrt{s(s-a)(s-b)(s-c)}}\\ where, s=\frac{a+b+c}{2}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

According to the Question three cows are tethered at the corner of a triangle of side 42 m,20 m and 34m,

therefore, the area of the plot which can be grasped by the cow will be equal to the area of the triangle formed by their position.

\therefore half of perimeter of the plot=s=\frac{42+20+34}{2}\:m\\ \implies s=\frac{\cancel{94}}{\cancel2}\ \implies \boxed{s=48\: m}

\therefore Area \:of\: the\: plot=\sqrt{48(48-42)(48-20)(48-34)}\\ \bf\red{\rightarrow}Area \:of\: the\: plot =\sqrt{48\times6\times28\times14}\\ \bf\red{\rightarrow} Area \:of\: the\: plot=\sqrt{3\times4\times4\times3\times2\times3\times3\times2\times7}\\ \bf\red{\rightarrow} Area \:of\: the\: plot=4\times3\times3\times2\sqrt{7}\\ \bf\red{\rightarrow} Area \:of\: the\: plot=72\sqrt{7}\\ \bf\red{\rightarrow}\boxed{ \red{Area \:of\: the\: plot}=190.49 \:m{}^{2}\:(approx)}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \#\mathcal{answer with quality  }\:  \:  \&  \:  \: \#BAL }

Similar questions