Three frequently used coordinates in R
3 are 1: Cartesian Coordinates, 2: Cylindrical coordi-
nates, and 3: Spherical Coordinates. Unit vectors in these coordinates are the following.
Cartesian coordinates (x, y, z):
eˆx = ˆi, (1)
eˆy = ˆj, (2)
eˆz = ˆk. (3)
Cylindrical coordinates (ρ, φ, z):
eˆρ = cos φ ˆi + sin φ ˆj, (4)
eˆφ = − sin φ ˆi + cos φ ˆj, (5)
eˆz = ˆk (6)
Spherical coordinates (r, θ, φ):
eˆr = sin θ cos φ ˆi + sin θ sin φ ˆj + cos θ
ˆk, (7)
eˆθ = cos θ cos φ ˆi + cos θ sin φ ˆj − sin θ
ˆk, (8)
eˆφ = − sin φ ˆi + cos φ ˆj. (9)
a) Find the expressions of (ˆer, eˆθ, eˆφ) in terms of (ˆeρ, eˆφ, eˆz).
b) A vector can be expressed in terms of any basis. In particular, we can write:
V~ = Vxeˆx + Vyeˆy + Vzeˆz = Vρeˆρ + Vφeˆφ + Vzeˆz = Vreˆr + Vθeˆθ + Vφeˆφ. (10)
In terms of column vector notation we write
VCr =
Vx
Vy
Vz
, VCl =
Vρ
Vφ
Vz
, VSp =
Vr
Vθ
Vφ
. (11)
The relations between them can be expressed in terms of matrix:
VCr = PCr←ClVCl, VCr = PCr←SpVSp, (12)
VCl = PCl←CrVCr, VCl = PCl←SpVSp, (13)
VSp = PSp←CrVCr, VSp = PSp←ClVCl, (14)
where PCr←Cl, PCr←Sp, PCl←Cr, PCl←Sp, PSp←Cr, PSp←Cl are all 3×3 matrices. Without explicitly
finding the matrices show that:
PSp←CrPCr←Sp = I3, PSp←Cl = PSp←CrPCr←Cl. (15)
c) Now explicitly compute PSp←Cl and show that PSp←Cl ∈ SO(3)
Answers
Answered by
45
Answer:
such a long text
sorry but I can't read it
Similar questions