Physics, asked by ani4255, 10 months ago

Three identical charges q is kept on corners of equilateral triangle of side. Then calculate net force on any corner of triangle?​

Answers

Answered by Anudesigner
0

Answer:

Explanation:

Generally coulomb force between two charges q  

1

​  

 and q  

2

​  

 is  

F

=  

4πϵ  

0

​  

r  

3

 

q  

1

​  

q  

2

​  

 

​  

 

r

 where r is the distance between the charges.

From figure, BC=  

a  

2

−  

4

a  

2

 

​  

 

​  

=  

2

3

​  

 

​  

a

Let  

F  

O

​  

 

​  

 be the coulomb force on charge at O due to rest charges at A(a,0) and B(  

2

a

​  

,  

2

3

​  

 

​  

a)  

thus,  

F  

O

​  

 

​  

=  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(a  

i

^

)+  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(  

2

a

​  

 

i

^

+  

2

3

​  

a

​  

 

j

^

​  

)=  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

(  

2

3

​  

 

i

^

+  

2

3

​  

 

​  

 

j

^

​  

)

 

∴∣  

F  

O

​  

 

​  

∣=  

(  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

)  

2

(  

4

9

​  

+  

4

3

​  

)

​  

=  

4πϵ  

0

​  

 

1

​  

.  

a  

2

 

3

​  

q  

2

 

​ Generally coulomb force between two charges q  

1

​  

 and q  

2

​  

 is  

F

=  

4πϵ  

0

​  

r  

3

 

q  

1

​  

q  

2

​  

 

​  

 

r

 where r is the distance between the charges.

From figure, BC=  

a  

2

−  

4

a  

2

 

​  

 

​  

=  

2

3

​  

 

​  

a

Let  

F  

O

​  

 

​  

 be the coulomb force on charge at O due to rest charges at A(a,0) and B(  

2

a

​  

,  

2

3

​  

 

​  

a)  

thus,  

F  

O

​  

 

​  

=  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(a  

i

^

)+  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(  

2

a

​  

 

i

^

+  

2

3

​  

a

​  

 

j

^

​  

)=  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

(  

2

3

​  

 

i

^

+  

2

3

​  

 

​  

 

j

^

​  

)

 

∴∣  

F  

O

​  

 

​  

∣=  

(  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

)  

2

(  

4

9

​  

+  

4

3

​  

)

​  

=  

4πϵ  

0

​  

 

1

​  

.  

a  

2

 

3

​  

q  

2

 

​ Generally coulomb force between two charges q  

1

​  

 and q  

2

​  

 is  

F

=  

4πϵ  

0

​  

r  

3

 

q  

1

​  

q  

2

​  

 

​  

 

r

 where r is the distance between the charges.

From figure, BC=  

a  

2

−  

4

a  

2

 

​  

 

​  

=  

2

3

​  

 

​  

a

Let  

F  

O

​  

 

​  

 be the coulomb force on charge at O due to rest charges at A(a,0) and B(  

2

a

​  

,  

2

3

​  

 

​  

a)  

thus,  

F  

O

​  

 

​  

=  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(a  

i

^

)+  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(  

2

a

​  

 

i

^

+  

2

3

​  

a

​  

 

j

^

​  

)=  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

(  

2

3

​  

 

i

^

+  

2

3

​  

 

​  

 

j

^

​  

)

 

∴∣  

F  

O

​  

 

​  

∣=  

(  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

)  

2

(  

4

9

​  

+  

4

3

​  

)

​  

=  

4πϵ  

0

​  

 

1

​  

.  

a  

2

 

3

​  

q  

2

 

​ Generally coulomb force between two charges q  

1

​  

 and q  

2

​  

 is  

F

=  

4πϵ  

0

​  

r  

3

 

q  

1

​  

q  

2

​  

 

​  

 

r

 where r is the distance between the charges.

From figure, BC=  

a  

2

−  

4

a  

2

 

​  

 

​  

=  

2

3

​  

 

​  

a

Let  

F  

O

​  

 

​  

 be the coulomb force on charge at O due to rest charges at A(a,0) and B(  

2

a

​  

,  

2

3

​  

 

​  

a)  

thus,  

F  

O

​  

 

​  

=  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(a  

i

^

)+  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(  

2

a

​  

 

i

^

+  

2

3

​  

a

​  

 

j

^

​  

)=  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

(  

2

3

​  

 

i

^

+  

2

3

​  

 

​  

 

j

^

​  

)

 

∴∣  

F  

O

​  

 

​  

∣=  

(  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

)  

2

(  

4

9

​  

+  

4

3

​  

)

​  

=  

4πϵ  

0

​  

 

1

​  

.  

a  

2

 

3

​  

q  

2

 

​ Generally coulomb force between two charges q  

1

​  

 and q  

2

​  

 is  

F

=  

4πϵ  

0

​  

r  

3

 

q  

1

​  

q  

2

​  

 

​  

 

r

 where r is the distance between the charges.

From figure, BC=  

a  

2

−  

4

a  

2

 

​  

 

​  

=  

2

3

​  

 

​  

a

Let  

F  

O

​  

 

​  

 be the coulomb force on charge at O due to rest charges at A(a,0) and B(  

2

a

​  

,  

2

3

​  

 

​  

a)  

thus,  

F  

O

​  

 

​  

=  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(a  

i

^

)+  

4πϵ  

0

​  

a  

3

 

q  

2

 

​  

(  

2

a

​  

 

i

^

+  

2

3

​  

a

​  

 

j

^

​  

)=  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

(  

2

3

​  

 

i

^

+  

2

3

​  

 

​  

 

j

^

​  

)

 

∴∣  

F  

O

​  

 

​  

∣=  

(  

4πϵ  

0

​  

a  

2

 

q  

2

 

​  

)  

2

(  

4

9

​  

+  

4

3

​  

)

​  

=  

4πϵ  

0

​  

 

1

​  

.  

2

 

3

​  

q  

2

 

Similar questions