Physics, asked by Abhuugf, 9 months ago

Three immisible liquids of derivatives d1>d2>d3 and refractive index ¶1>¶2>¶3 are put.the height of liquid column is h/3. A dot is made at the bottom of the Beaker f normal vision. Find the apparent depth of the dot

Answers

Answered by naina000
0

kaha se mila ????????????

Answered by bestwriters
0

The apparent depth of the dot is \frac{h}{3}\left[\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right]

Explanation:

Let the real depth of the dot undo liquid of density d₁ be h/3

Let the apparent depth be x₁

\mu_{1}=\frac{h}{\left(\frac{3}{\mu_{2}}\right)}

x_{1}=\frac{h}{3 \mu_{1}}

Similarly, the apparent depth of the dot on the second liquid is:

x_{2}=\frac{h}{3 \mu_{2}}

Similarly, the apparent depth of the dot on the third liquid is:

x_{3}=\frac{h}{3 \mu_{3}}

Now, the depth is:

x=x_{1}+x_{2}+x_{3}

On substituting the values, we get,

x=\frac{h}{3 \mu_{1}}+\frac{h}{3 \mu_{2}}+\frac{h}{3 \mu_{3}}

\therefore x=\frac{h}{3}\left[\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right]

Similar questions