Math, asked by sainathreddykadapala, 4 months ago

three lines AB
In the given figure
8
intersecting at o find the
vakees of Ч and it is being given
x: 4:2=
and
than
2!315​

Answers

Answered by rajninohwar1983
6

Answer:

\red { Value \: of \:x } = 36\degreeValueofx=36°

\red { Value \: of \:y } = 54\degreeValueofy=54°

\red { Value \: of \:z } = 90\degreeValueofz=90°

Step-by-step explanation:

Given:

Three lines AB,CD and EF intersecting at O. x:y:z=2:3:5.

Solution:

\angle AOE = \angle FOB∠AOE=∠FOB

\blue { ( Vertically \: opposite \: angles)}(Verticallyoppositeangles)

Similarly.,

\angle EOD = \angle FOC = y∠EOD=∠FOC=y

\angle BOD = \angle AOC = z∠BOD=∠AOC=z

\angle AOE + \angle EOD + \angle DOB + \angle BOF + \angle FOC + \angle COA = 360\degree∠AOE+∠EOD+∠DOB+∠BOF+∠FOC+∠COA=360°

\orange { ( Sum \: the \: angles \:around \: a \:point )}(Sumtheanglesaroundapoint)

\implies x + y + z + x + y + z = 360\degree⟹x+y+z+x+y+z=360°

\implies 2x + 2y + 2z = 360\degree⟹2x+2y+2z=360°

\implies 2(x+y+z) = 360\degree⟹2(x+y+z)=360°

\implies x + y + z = \frac{360}{2} = 180\degree⟹x+y+z=

2

360

=180°

x:y:z = 2:3:5 \:(given)x:y:z=2:3:5(given)

Let \: x = 2mLetx=2m

y = 3my=3m

z = 5mz=5m

x + y + z = 180\degreex+y+z=180°

\implies 2m+3m+5m = 180⟹2m+3m+5m=180

\implies 10m = 180\degree⟹10m=180°

\implies m = \frac{180}{10} = 18⟹m=

10

180

=18

Therefore.,

\red { Value \: of \:x } = 2m = 2 \times 18 = 36\degreeValueofx=2m=2×18=36°

\red { Value \: of \:y } = 3m = 3\times 18 = 54\degreeValueofy=3m=3×18=54°

\red { Value \: of \:z } = 5m = 5\times 18 = 90\degreeValueofz=5m=5×18=90°

•••♪

Similar questions