Math, asked by bzhsjisjs, 11 months ago

three masses, each equal to M are placed at the three corners of a square of side a. calculate the force of attraction on unit mass placed at the fourth corner.​

Answers

Answered by Anonymous
32

\huge{\mathbf{\red{\underline{\underline{Solution:-}}}}}

\mathtt{\underline{Newton's\: universal\:law\:of\: Gravitation:}}

F=  \frac{Gm_1m_2}{ {r}^{2} }

\mathtt{\underline{Force\: on\:mass\:at\:D\:due\:to\:mass\:at\:A:}}

\mathtt{F_{1}=\frac{Gm^{2}}{L^{2}}}

\mathtt{\underline{Force\: on\:mass\:at\:D\:due\:to\:mass\:at\:C:}}

\mathtt{F_{2}=\frac{Gm^{2}}{L^{2}}}

\mathtt{\underline{Force\: on\:mass\:at\:D\:due\:to\:mass\:at\:B:}}

\mathtt{F_{3}=\frac{Gm^{2}}{2L^{2}}}

\mathtt{\underline{Net\: force\:at\:D\:due\:to\:A\:and\:C:}}

\mathtt{F_{4}= \sqrt{F_{1}^{2}+F_{2}^{2}}}

\mathtt{=\sqrt{2}\frac{Gm^{2}}{L^{2}}}

\mathtt{\underline{Net\: force\:on\:D:}}

\mathtt{F_{net}=F_{4}+F_{3}}

\mathtt{=\sqrt{2}\frac{Gm^{2}}{L^{2}}}+\frac{Gm^{2}}{2L^{2}}

\mathtt{\boxed{=\frac{Gm^{2}}{L^{2}}}}


Anonymous: osm❤✔
Anonymous: Mast❤️
Anonymous: Tysm ✌
Anonymous: Amazing :D
Anonymous: Tysm
Sweetums: perfect
Anonymous: Tysm❤
Answered by Anonymous
36

\huge\bf{\pink{\mid{\underline{\overline{your\: answer}}}\mid}}

\large{\underline{\underline{\mathbf{Given:-}}}}

Three masses each equal to M.

M = 1

Three corners of a square of side A.

 f_{1}  \:  \: and \:  \:  \:  f_{3}

\large{\underline{\underline{\mathbf{To \:find-}}}}

Force of attraction of unit mass at the fourth corner.

\large{\underline{\underline{\mathbf{Solution-}}}}

Force on M = 1

✏ at corners 1 and 3,

 f_{1} =  f_{3} =  \frac{gm}{ {a}^{2} }

✏ resultant of these F1 and F3 vectors are,

 f_{r} =   \sqrt{2} \frac{gm}{ {a}^{2} }

and it's direction is along the daigonal.

\bold{i.e.\:toward\: corner \:2}

Then,

Force on m due to M at 2 is

 f_{2} =  \frac{gm}{ { \sqrt{2a} }^{2} }  =  \frac{gm}{ {2a}^{2} }

\bold{Fr\:and\: F2\: act\: in\: the \: same \: direction}

\rm{\underline{Resultant\: of\: these\: two\: net\: force:}}

 =  >  f_{net} =  \frac{ \sqrt{2gm {a}^{2} } }{ {a}^{2} }   +  \frac{gm}{ {a}^{2} } ( \sqrt{2}  +  \frac{1}{2} )

\bold{it\: is\: directed\: along\: the\: daigonal}

_________________________________________

Attachments:

Anonymous: Great ❤✌
Anonymous: wello :)
Anonymous: Amazing❤️
Anonymous: Superb :D
Anonymous: wello
Sweetums: perfect
Similar questions