Physics, asked by komal52103, 1 year ago

three masses m1 ,m2,and m3 are attached to a string pulley .all three masses are held at rest and then released . if m3 remains at rest ,then find relation in m1 ,m2 and m3

Attachments:

Answers

Answered by phillipinestest
8

Answer:

Given data states that there are three masses m_1, m_2\quad and\quad m_3, all are tied to a string over pulley at rest and then released, therefore, we have an equation

-T-{ m }_{ 1 }g\quad =\quad { m }_{ 1 }a\quad and\quad { m }_{ 2 }g-T\quad =\quad { m }_{ 2 }a.

Add these equation and we will get the acceleration a-{ m }_{ 2 }g-{ m }_{ 1 }g\quad =\quad ({ m }_{ 1 }+{ m }_{ 2 })\times a

\Rightarrow a\quad =\quad \frac { ({ m }_{ 2 }g-{ m }_{ 1 }g) }{ ({ m }_{ 1 }+{ m }_{ 2 }) }

Substitute the value of a into the equation to find Tension T,

we get -T\quad =\quad { m }_{ 1 }g+{ m }_{ 1 }\times a

\Rightarrow \frac { (2{ m }_{ 1 }{ m }_{ 2 }g) }{ ({ m }_{ 1 }+{ m }_{ 2 }) }

The third mass is at rest, therefore tension will be

-T\quad =\quad 2T\quad =\quad \frac { (4{ m }_{ 1 }{ m }_{ 2 }g) }{ ({ m }_{ 1 }+{ m }_{ 2 }) }

. Therefore, as { m }_{ 3 } at rest,

{ m }_{ 3 }g\quad =\quad \frac { (4{ m }_{ 1 }{ m }_{ 2 }g) }{ { (m }_{ 1 }+{ m }_{ 2 }) }Rearrange the given expression,  

we get – -{ m }_{ 1 }{ m }_{ 3 }+{ m }_{ 2 }{ m }_{ 3 }\quad =\quad 4{ m }_{ 1 }{ m }_{ 2 }

Similar questions