Math, asked by HaldiRamm, 5 months ago

three metal cubes of sides 5 cm 4 cm and 3 cm are melted and recast into a new cube find the edge of the new cube of formed.​

Answers

Answered by thebrainlykapil
163

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • three metal cubes of sides 5 cm 4 cm and 3 cm are melted and recast into a new cube find the edge of the new cube of formed.

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\underbrace\red{\boxed{ \sf \blue{ Volume \: of \: the \: First\: Cube }}}

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: (side)^{3}   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: (5cm)^{3}   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: 5 \times 5 \times 5   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: 125cm^{3}   }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Volume \: of \: first \: Cube\: = \: 125cm^{3}   }}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

\underbrace\red{\boxed{ \sf \blue{ Volume \: of \: the \: Second \: Cube }}}

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: Second \: cube \:  =  \: (side)^{3}   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: (4cm)^{3}   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: 4 \times 4 \times 4   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: 64cm^{3}   }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Volume \: of \: first \: Cube\: = \: 64cm^{3}   }}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

\underbrace\red{\boxed{ \sf \blue{ Volume \: of \: the \: Third \: Cube }}}

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: Third  \: cube \:  =  \: (side)^{3}   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: (3cm)^{3}   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: 3 \times 3 \times 3   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: first \: cube \:  =  \: 27cm^{3}   }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Volume \: of \: first \: Cube\: = \: 27cm^{3}   }}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\

Since the new cube is made from all the three cubes, So the volume of the new cube will be the sum of the Volumes of all the three cubes.

 \\

\underbrace\red{\boxed{ \sf \blue{ Volume \: of \: the \: New\: Cube }}}

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: New  \: cube \:  =  \: ( \: 125 \:  +  \: 64 \:  +  \: 27 \: ) \: cm ^{3}   }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Volume \: of \: New \: Cube\: = \: 216cm^{3}   }}}\\

 \\  \\  \\

\underbrace\red{\boxed{ \sf \blue{ Edge \: of \: the \: New \: Cube\: Formed   }}}

\qquad \quad {:} \longrightarrow \sf{\sf{  {(side)}^{3}  \:  =  \: 216   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{ Side \: = \:  \sqrt[3]{216}    }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{Side \: = \:  6 \times \: 6 \times  \: 6 \:  }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Side \: = \: 6cm }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Edge \: of \: the \: New \: Cube  \: = \underline {\underline{ 6cm}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions