Math, asked by 555583, 11 months ago

Three no.s are in the ratio 3:4:5 and the sum their cubes is 1728. Find the numbers.

Answers

Answered by StarrySoul
33

Given :

• Three numbers are in the ratio 3:4:5

• Sum of their cubes is 1728

To Find :

• The three numbers

Solution :

Let the numbers be 3x, 4x and 5x

 \bf \underline{According \:  to \:  the \:  Question : }

 \longrightarrow \sf \: ({3x})^{3}  + (4x) ^{3}  + ( {5x})^{3}  = 1728

 \longrightarrow \sf \: 27 {x}^{3}  + 64x ^{3}  + 125 {x}^{3} = 1728

 \longrightarrow \sf \: 216 {x}^{3} = 1728

 \longrightarrow \sf \: {x}^{3} =   \cancel\dfrac{1728}{216}

 \longrightarrow \sf \: {x}^{3} =   8

 \longrightarrow \sf \: {x}=    \sqrt[3]{8}

 \longrightarrow \sf \: {x}=    \sqrt[3]{2 \times 2 \times 2}

 \longrightarrow \sf \red {x \: =   2}

Now, We've assumed the number as 3x,4x and 5x

Numbers :

  \dag \:  \sf {3x = 3(2) =  \boxed{ \purple{\sf \: 6}}}

  \dag \:  \sf {4x = 4(2) =  \boxed{ \purple{\sf \: 8}}}

  \dag \:  \sf {5x = 5(2) =  \boxed{ \purple{\sf \: 10}}}

Verification :

 \longrightarrow \sf \: ({3x})^{3}  + (4x) ^{3}  + ( {5x})^{3}  = 1728

 \longrightarrow \sf \: ({6})^{3}  + (8) ^{3}  + ( {10})^{3}  = 1728

 \longrightarrow \sf \: 216 + 512 + 1000 = 1728

 \longrightarrow \sf  1728= 1728

Hence, Verified!

Answered by MarshmellowGirl
26

 \large \underline{ \blue{ \boxed{ \bf \green{Required \: Answer}}}}

In Attatched File.....

Attachments:
Similar questions