three number are in ratio 2 : 3 :4 the sum of their cubes is 33957 find the numbers
Answers
Answer:
hἶ ომནპ hპΓპ ἶჰ ყõυΓ მῆჰwპΓ
Step-by-step explanation:
Answers
Answers TPS
Let the numbers be 2x, 3x and 4x
Let the numbers be 2x, 3x and 4xsum of cubes = 33957
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7Numbers are:
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7Numbers are:2x = 2×7 = 14
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7Numbers are:2x = 2×7 = 143x = 3×7 = 21
Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7Numbers are:2x = 2×7 = 143x = 3×7 = 214x = 4×7 = 28
℘Ɩʂʂ ɱąཞƙ ɱɛ ąʂ ą ცཞąıŋƖıʂɬ
Answer:
Let the ratio be 2x : 3x : 4x.
According to Question,
(2x)³ + (3x)³ + (4x)³ = 33957
8x³ + 27x³ + 64x³ = 33957
99x³ = 33957
x³ = 33957 ÷ 99
x³ = 343
x = 7
Hence, first number = 2 × 7 = 14
Second number = 3 × 7 = 21
Third number = 4 × 7 = 28