Math, asked by harishchandra62, 9 months ago

three number are in ratio 2 : 3 :4 the sum of their cubes is 33957 find the numbers​

Answers

Answered by sujal1732
6

Answer:

hἶ ომནპ hპΓპ ἶჰ ყõυΓ მῆჰwპΓ

Step-by-step explanation:

Answers

Answers TPS

Let the numbers be 2x, 3x and 4x

Let the numbers be 2x, 3x and 4xsum of cubes = 33957

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7Numbers are:

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7Numbers are:2x = 2×7 = 14

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7Numbers are:2x = 2×7 = 143x = 3×7 = 21

Let the numbers be 2x, 3x and 4xsum of cubes = 33957⇒(2x)³ + (3x)³ + (4x)³ = 33957⇒8x³ + 27x³ + 64x³ = 33957⇒99x³ = 33957⇒x³ = 33957/99 = 343⇒x = ∛343 = 7Numbers are:2x = 2×7 = 143x = 3×7 = 214x = 4×7 = 28

℘Ɩʂʂ ɱąཞƙ ɱɛ ąʂ ą ცཞąıŋƖıʂɬ

Answered by asahilthakur
0

Answer:

Let the ratio be 2x : 3x : 4x.

According to Question,

(2x)³ + (3x)³ + (4x)³ = 33957

8x³ + 27x³ + 64x³ = 33957

99x³ = 33957

x³ = 33957 ÷ 99

x³ = 343

x = 7

Hence, first number = 2 × 7 = 14

Second number = 3 × 7 = 21

Third number = 4 × 7 = 28

Similar questions